

GeoHealth: A Surveillance and Response System Resource for Vector Borne Disease in the Americas

John Malone¹, Rebecca Christofferson¹, *Jennifer McCarroll¹, Jeffrey Luvall², SJ Park³, Mara Bavia⁴, Raul Guimaraes⁵ Elivelton Fonseca⁶, Prixia del Mar Nieto¹, Moara Rodgers¹, Ryan Avery¹,

¹ Pathobiological Sciences, LSU School of Veterinary Medicine;
² NASA Marshall Space Flight Center, Huntsville AL,
³ Electrical Engineering and Computer Science, LSU
⁴ Federal University of Bahia, Salvador, Brazil
⁵ Sao Paulo State University, Presidente Prudente, Brazil
⁶ Federal University of Uberlandia, Uberlandia, Brazil

Objectives

- Construct a geospatial health resource data portal (GeoHealth) compatible with GEOSS

- Map and model the epidemiological risk of two prototype vector borne diseases: Visceral leishmaniasis and *Aedes* borne arboviruses

- Process big data to discover 'hidden' associations of disease for ecological niche modeling vs hypothesisdriven statistical analysis

- Implement dissemination and training programs to promote geospatial mapping and modeling for VBD as envisioned in GEOSS.

ZINA IN TIC AIMENTARY Following its arrival in the Americas in 2015, Zika virus is now being actively transmitted in many of the countries that harbour its main carrier, the *Aedes aegypti* mosquito.

AUC VL Worldclim – 0.882 Tmax12 35.7% Prec06 19.7% Tmax01 13.9% AUC LL BioClim – 0.835 Bio 14 21.3% - Prec Driest Mo Bio 15 13.8% - Prec Seasonality Bio 16 16.9% - Prec Wettest Q Results suggest Direct earth observing satellite measurement of soil moisture by SMAP can be used *in lieu* of models calculated from classical thermal and precipitation climate station data to assess VL disease risk and to guide control program interventions.

AUC VL SMAP – 0.884		AUC LL SMAP – 0.793		
Oct	27.1%	July	37.4%	
Aug	24.8%	Dec	17.0%	
Sept	20.4%	March	14.5%	

SMAP 1Km Maxent Models

Maxent Models SMAP VL Cases

SMAP	Years	AUC	%Contribution	Jackknife test	
				(Highest gain)	(Decreases gain)
VL BA	2015	0.85	SMAP 12 (44.2)	SMAP 04	SMAP 04
	2016	0.859	SMAP 01 (28.3)	SMAP 01	SMAP 01
	2017	0.828	SMAP 09 (34.1)	SMAP 09	SMAP 06
	2018	0.869	SMAP 01 (27.1)	SMAP 01	SMAP 05
VL SP	2015	0.869	SMAP 06 (29.3)	SMAP 08	SMAP 07
	2016	0.959	SMAP 11 (37.1)	SMAP 11	SMAP 11
	2017	0.945	SMAP 07 (49.1)	SMAP 09	SMAP 07
	2018	0.928	SMAP 06 (66.1)	SMAP 06	SMAP 06

Maxent Models SMAP Sand Fly

SMAP	Years	AUC	%Contribution	Jackknife test (Highest gain) (De	ecrease gain)
SF BA	2015	0.85	SMAP 12 (44.2)	SMAP 12	SMAP 12
	2016	0.859	SMAP 11 (31.9)	SMAP 11	SMAP 01
	2017	0.828	SMAP 02 (20.8)	SMAP 02	SMAP 11
	2018	0.869	SMAP 01 (32)	SMAP 01	SMAP 12
SF SP	2015	0.869	SMAP 06 (29.3)	SMAP 08	SMAP 07
	2016	0.874	SMAP 11 (29.6)	SMAP 11	SMAP 11
	2017	0.878	SMAP 07 (27.2)	SMAP 06	SMAP 07
	2018	0.878	SMAP 06 (45.5)	SMAP 09	SMAP 02

Models - Habitat-Household level

NDVI NDWI NHFD

Mud Index

Build up index

NDWI

Biological Drivers and Limiting Factors

Collaborators

Adolfo Lutz Institute, Sao Paulo UNESP Presidente Prudente-Geography

Legend ECO STRESS 20180827 Value High : 319.58 Low : 140.92

Bauru Daily ET wm-2 2018 Day 256

ECOSTRESS 70m res.

Max 370 wm-2

Mean 294 wm-2

SUMMARY

BAHIA STATE

Human cases of VL: SMAP January (most important variable), SMAP April and SMAP September Sand fly: SMAP December (most important variable), SMAP November and SMAP January (for the sand fly model in Bahia, it was possible to observe a seasonality for SMAP that encompasses the period between December to February)

SAO PAULO STATE

Human Cases of VL: SMAP June (most important variable), SMAP July and SMAP November Sand fly: SMAP of June, July and November (most important variables)

2016 showed identical behavior for both states considering SMAP data, with the most important variable being SMAP of November for both states

Neural Network Models

