

AN EARLY WARNING SYSTEM FOR VECTOR-BORNE DISEASE RISK IN THE AMAZON

NASA PROJECT NNX15AP74G

William Pan, Duke University

Health & Air Quality Applications Program Review, Sept 15 & 21, 2020, Virtualtown, USA

Project Team

William Pan, Duke University

Mark Janko, University of WA

Ben Zaitchik, Johns Hopkins Univ

Carlos Mena, Francesco Pizzitutti, Universidad San Francisco de Quito, Ecuador

Andres Lescano, Gabriela Salmon-Mulanovich, Universidad Peruana Cayetano-Heredia

Beth Feingold, SUNY-Albany

Cesar Munayco, CDC-Peru, Ministry of Health

0 1 3 5 10 15 20 30 40.7

Project Summary NNH13ZDA001N-Health

OBJECTIVE Develop an **early warning system for malaria** in the Peruvian Amazon and evaluate the expansion of the system to other diseases and Amazon regions.

GEOGRAPHIC SCOPE

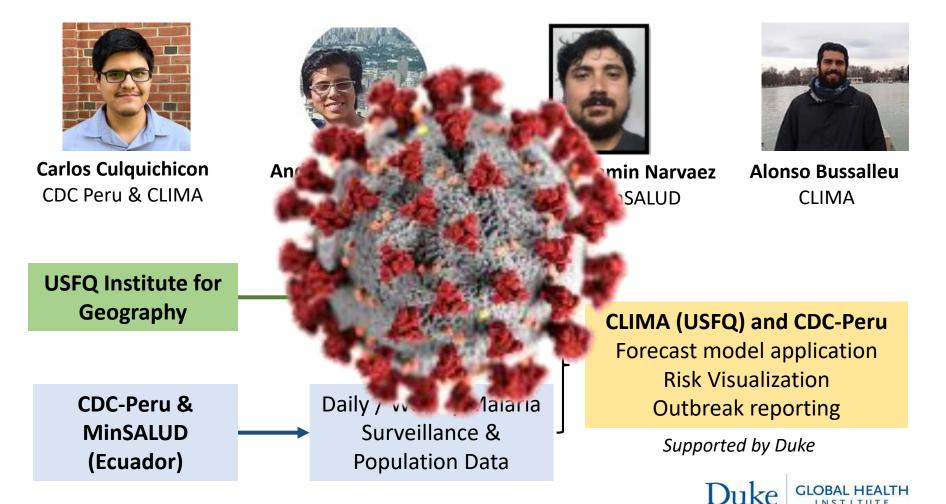
Primary : Peru (Loreto), Ecuador (Napo, Orellana, Succumbios) Secondary locations: Colombia, Western Brazil (Acre)

SOCIETAL BENEFIT

Improved / targeted interventions; Application of components to other diseases and climate events

EARTH OBSERVATIONS / MODELS / TECHNOLOGY

Land Data Assimilation System (LDAS) – MODIS, LandSAT, GRACE, TRMM, GPM, SMAP, GOES


Summary of Accomplishments (overall)

- We forecast malaria outbreaks in small, administrative districts 12 weeks in advance with ~90% sensitivity
 - Two modeling levels: Ecoregion and District
- We have strong government & academic partnerships in Peru & Ecuador that are ready to adopt and implement the system
 - LDAS implementation in Ecuador in the Institute of Geography at USFQ in partnership with the Ministry of Public Health
 - Forecasting capacities to be adopted by CDC-Peru and CLIMA (Climate and Infectious Disease Laboratory at UPCH, Lima)
- Additional Funding:
 - Bi-weekly team telecons to prepare application to EU "Early Warning for Epidemics" prize for vector-borne disease forecasting (\$5 million euros)
 - 10% score from NIAID to support technical improvements to MEWS for understanding cross-border malaria risk
- Publications: 3 articles published, 6 in review (4 are COVID-related)
- ARL7 (goal ARL 8)

Accomplishments & Challenges 2019-20

• Implementation & Training program (March – June 2020)

Accomplishments & Challenges 2019-20

• Training was postponed to Fall 2020, then cancelled

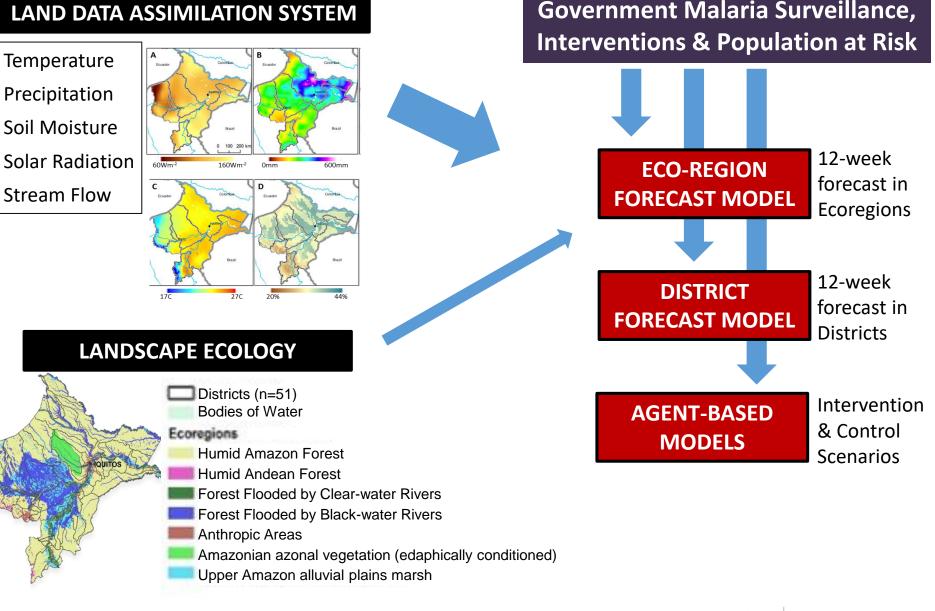
CDC Peru & CLIMA

Andree Valle Campos CDC Peru

Manuel Benjamin Narvaez USFQ & MinSALUD

Began MSPH Program at Emory

Repurposed to COVID-19


Began PhD at Swiss-TPH

The rest of this presentation ...

- How do we achieve 90% sensitivity in detecting malaria outbreaks?
 - LDAS
 - Ecoregion analysis & District level forecast models
- Recent Publications on PAMAFRO and International Migration using our model

EcoRegion Forecast

- LDAS & Ecosystem data are combined to identify EcoRegions
- Malaria & Population data are aggregated to the EcoRegion level
- Unobserved Component Model (UCM) used to conduct forecasts

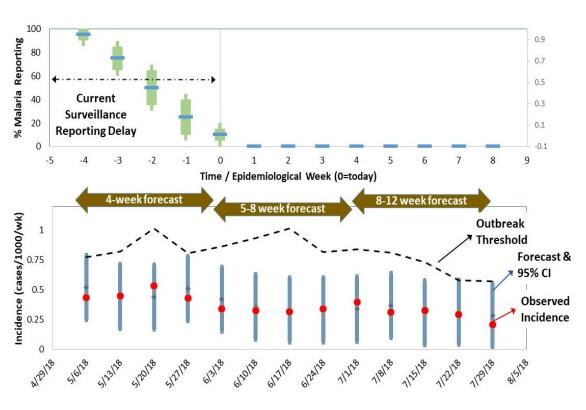
$$y_t = \mu_t + \gamma_t + \varphi_t + r_t + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{j=1}^m \beta_j x_{jt} + \varepsilon_t$$

 $y_t \simeq$ malaria cases/1000 during week t

 $\mu_t, \gamma_t, \varphi_t,$ and r_t represent the trend, seasonal, cyclical and autoregressive components

 ϕ_i is an autoregressive term capturing the momentum of infections

 eta_j is the unknown effect for explanatory factors


 ε_t is the error term

MINSA-defined outbreak level

EcoRegion Forecast

Real-time data reporting (top) and forecast (bottom) for EcoRegion 1 from May-July 2018 in Loreto, Peru

Forecast Performance, 2016

Forecast weeks		ТР	FN	FP	ΤN	Se	Sp
Eco-Region 1	1-4	3	0	0	10	100%	100%
	5-8	3	0	1	9	100%	90%
	9-12	3	0	3	7	100%	70%
Eco-Region 3	1-4	1	1	1	10	50%	91%
	5-8	1	1	1	10	50%	91%
	9-12	2	0	3	8	100%	73%

TP=True Pos; FN=False Neg; FP=False Pos.; TN=True Neg.

District Level Forecast

- Probability of District outbreak = (Ecoregion Outbreak Prob) * (District Outbreak Prob)
- Hierarchical Bayesian spatio-temporal logistic model

$$y(s,t) = \mathbf{x}^{T}(s,t)\beta + \theta(s,t)$$

 $y(s,t) \sim \#$ malaria cases in district s during week t $x(s,t) \sim$ vector of covariates & lagged predictors $\theta(s,t) \sim$ spatio-temporally correlated random effects

- The Model estimates Malaria incidence rate during week t in district s
- MINSA thresholds used to define an outbreak

District Level Forecast

Root-mean square prediction error, Fernando Lores and Ramon Castilla districts, 2016-19

Sensitivity & Specificity of 8-week district forecasts, 2007-2019

District	Se	Sp				
Ecoregion 1						
Iquitos	88%	84%				
Fernando Lores	51%	84%				
Punchana	89%	74%				
Belen	79%	70%				
San Juan Bautista	97%	67%				
Jenaro Herrera	94%	98%				
EcoRegion 3						
Ramon Castilla	57%	79%				
Pebas	54%	68%				
Yavari	55%	63%				
San Pablo	60%	76%				

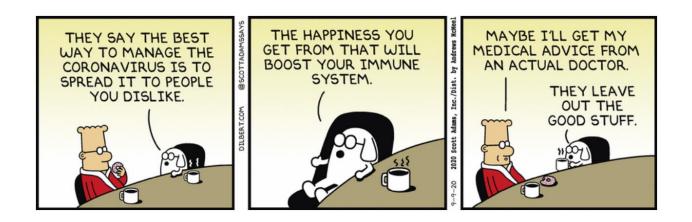
Publications / Manuscripts in Review 2019-20

Recalde Coronel, C., B. Zaitchik, WK Pan (2020) "Madden-Julian oscillation influence on sub-seasonal rainfall variability on the west of South America" *Climate Dynamics*, in-press, DOI: 10.1007/s00382-019-05107-2

Pizzitutti F, CF Mena, B Feingold, WK Pan, (2019) Modeling asymptomatic infections and work-related human circulation as drivers of unstable malaria transmission in low-prevalence areas: a study in the Northern Peruvian Amazon. *Acta Tropica*: 2019 Jan 28. pii: S0001-706X(18)31234-8. doi: 10.1016/j.actatropica.2019.01.022

Gunderson, A., R Kumar, C Recalde-Coronel, LE Vasco, A Valle-Campos, CF Mena, BF Zaitchik, AG Lescano, WK Pan, MM Janko "Malaria transmission and spillover across the Peru-Ecuador border: a spatio-temporal analysis" *International Journal of Environmental Research and Public Health*, in-review

Janko, MM, C Recalde-Colonel, AG Lescano, G Salmón-Mulanovich, BF Zaitchik, WK Pan "Sustained malaria control and its withdrawal in the Loreto region of Peru: A retrospective, observational study of the potential impact of the PAMAFRO program", *LANCET*, in-review


(COVID-19 related)

Pan, WK, S Tyrovolas, GV Iago, RR Dasgupta, D Fernandez, B Zaitchik, P Lantos, CW Woods "Heterogeneity of non-pharmaceutical intervention effectiveness in the US before phased reopening" <u>https://www.medrxiv.org/content/10.1101/2020.08.18.20177600v1</u>

Turner, NA, WK Pan, VS Martinez-Bianchi, GM Maradiaga Panayotti, AM Planey, CW Woods, PM Lantos, (2020) "Racial, Ethnic, and Geographic Disparities in Novel Coronavirus (SARS-CoV-2) Test Positivity in North Carolina" *Open Forum Infectious Diseases*, ofaa413, <u>https://doi.org/10.1093/ofid/ofaa413</u>

THANK YOU!

