

EARTH SCIENCE **APPLIED SCIENCES**

STRENGTHENING ECOSYSTEMS

Ecological Forecasting Program Overview **Dr. Keith Gaddis Program Manager**

Overview: Projects By The Numbers

Thematic Program Topics

Protected Area Management

Ecosystem **Services**

Ecosystem **Conservation**

Rewilding and Restoration

Outcomes

Keeping Fisheries from Encountering the Endangered Atlantic Sturgeon

Commercial fisheries in the Delaware Bay are more than happy to avoid the endangered Atlantic Sturgeon. With risk alerts from the Atlantic Sturgeon Forecast Warning System, they can.

EARTH SCIENCE APPLIED SCIENCES

Sustainable Science for the Sustainable Cashmere Project, South Gobi, Mongolia

Becky Chaplin Kramer

Sustainable Science for the Sustainable Cashmere Project, South Gobi, Mongolia

Becky Chaplin-Kramer Natural Capital Project Stanford University & University of Minnesota

@beckyck anatcapprojec

© Dan & Sandy Ciske, Wild Mongolia

Livestock trends in Mongolia, post deregulation

The Sustainable Cashmere Project is a new initiative that aims to use market mechanisms to foster sustainable practices and deliver measurable improvements on rangelands, wildlife and livelihoods through the cashmere supply chain in Mongolia.

Sustainable Cashmere Project

Sustainable Cashmere Project

Measurements

Rangeland monitoring

Earth observations & rangeland modeling to complement on-the-ground monitoring

rangeland condition

addition from cashmere and livestock products

Where should field resources be deployed? How should herd size be adapted to changing conditions?

How much can management contribute to rangeland health and ecosystem services?

And will this be adequate to support wildlife and maintain herder livelihoods, amidst climate change?

The Good Growth Company What are the risks of management strategies and how can they be managed?

Are changes in grazing management able to offset mining impacts enough to have a net positive impact?

What role can management play amidst climate change?

Rangeland production modeling

Validation across a precipitation gradient

Model accuracy improved using satellite climate data (CHIRPS precipitation, MODIS LST) and calibrated with vegetation indices (MODIS NDVI)

15 transects, 5 replicates each = 75 sites across Mongolia

JAN

(2014: $\rho = 0.82$, p < 0.001; 2015: $\rho = 0.78$, p = 0.001)

Change under future climate conditions

Current

Future (2070)

8000+ kg/ha Cumulative biomass (April

-Sept)

100 kg/ha

Rangeland production modeling

>1 Average diet
 sufficiency
 <1 (April – Sept)

What role can management and play amidst climate change?

Grazing impacts matter more in more productive climates; will matter more under future climate

Frequency (cumulative distribution)

alone	
	_
_	
	-

How much has management contributed to rangeland health?

Are changes in grazing management able to offset mining impacts enough to have a net positive impact?

How accurately (and costeffectively) can we detect changes in rangeland condition?

- NDVI near sampling date

<15%

Percent cover of vegetation

(Landsat past 10 years) Different trajectories of the relationship between precipitation & greenness Positive residuals = better than average

Satellite monitoring

LandTrendr Clusters

- Decrease/Spike | Degradation?
- Increase
- Stasis/Gradual Increase
- Steep Increase

Where should limited field resources be deployed?

The Good Growth Company

KERING MAY CAN WE IMPROVE MONITORING DESIGN?

Wet year (2018)

Grazing difference (Cumulative live biomass)

Maximum difference

Minimum difference

Rangeland production modeling

Wet year (2018)

Combined modeling & monitoring

Grazing difference on degraded pixels (Cumulative live biomass)

Maximum difference

Minimum difference

Grazing difference (Cumulative live biomass)

Maximum difference

Minimum difference

Rangeland production modeling

Combined modeling & monitoring

Grazing difference on degraded pixels (Cumulative live biomass)

Maximum difference

Minimum difference

How can we improve monitoring design?

LandTrendr Clusters

(Landsat past 10 years) Decrease/Spike Increase Stasis/Gradual Increase Steep Increase Top 25% grazing impact on degraded (Decrease/Spike) pixels in wet or dry years

Important areas to watch for monitoring High potential areas for intervention

Scaling up regenerative grazing through combined modeling & monitoring

bchaplin@stanford.edu rchaplin@umn.edu @beckyck @natcapproject

The Good Growth Company

Where should field resources be deployed?

How should herd size be adapted to changing conditions?

What are the risks of different management strategies and how can they be managed?

https://www.goodgrowth.earth/

"Putting regeneration at the center of business, using the best available science to define regeneration"

EARTH SCIENCE **APPLIED SCIENCES**

Coral disease forecasting in the tropical Pacific

A new tool hosted by **NOAA Coral Reef Watch** Megan Donahue

Our Team

Megan Donahue Jamie Caldwell Austin Greene

Mark Eakin **Erick Geiger** Gang Liu Jacquie De La Cour Derek Manzello

Scott Heron

Bill Leggat **Tess Moriarty**

Tracy Ainsworth

Laurie Raymundo

Understanding coral disease

Credit: Shaun Wolfe / Ocean Image Bank

Coral disease impacts are widespread

Vega Thurber et al 2020

MARIANA ARCHIPELAGO

AUSTRALIA

CORAL TRIANGLE PACIFIC REMOTE ISLAND AREAS

Australia

NORTHWESTERN HAWAIIAN ISLANDS

MAIN HAWAIIAN ISLANDS

AMERICAN SAMOA

EARTH SCIENCE APPLICATIONS WEEK 2021

U. S.

TISSUE LOSS

UNUSUAL GROWTHS

An early warning system for coral disease

- Five Pacific regions
- Multiple disease types
- Multiple host species
- Satellite-derived environmental drivers

Forecasting coral disease: a new tool

Credit: Shaun Wolfe / Ocean Image Bank

New experimental product

Multi-Factor Coral Disease Forecast (Version 1.0, released May 4, 2021, experimental product)

egion or select from dropdown: Re	egion 🗸

Multi-Factor Coral Disease Forecast Product Description

Forecasts

Scenarios

Upcoming Trainings & Tool Demos

Reef Futures 2021 December 12-17, 2021 Key Largo, Florida

reeffutures.com

Ocean Sciences Feb 27 – Mar 22, 2022 Honolulu, Hawaii

www.aslo.org/osm2022

Derek Manzello, NOAA Coral Reef Watch

Thank you

megan.donahue@hawaii.edu

EARTH SCIENCE APPLICATIONS WEEK 2021

Credit: Shaun Wolfe / Ocean Image Bank

EARTH SCIENCE APPLIED SCIENCES

Colorado Ecological Forecasting

Monitoring Post-Fire Cheatgrass (*Bromus tectorum*) Distribution to Inform Management Planning

Alix Bakke*, Christopher Tsz Hin Choi, Alex Posen, Monika Rock, & Nikole Vannest

Project Overview

Cheatgrass & Wildfires

- Cheatgrass is an invasive species in the U.S.
- Fire has the potential to create more cheatgrass habitat
- Cheatgrass has the potential to create more frequent fires

Objectives

Determine preferred post-disturbance cheatgrass growing conditions

Detect and map cheatgrass within the predicted area of suitable habitat

44

Results Habitat Suitability Model

Using a combined approach of habitat suitability and detection models created accurate cheatgrass maps.

Post-fire cheatgrass detection is possible within a short time frame if there's changes in vegetation.

Remote sensing provides a time and money saving method for mapping cheatgrass.

Acknowledgements

Colorado Ecological Forecasting Team

Christopher Tsz Hin Choi

Nikole Vannest

Monika Rock

Alex Posen

Alix Bakke

Science Advisors

Peder Engelstad Nicholas Young Dr. Tony Vorster Brian Woodward Dr. Paul Evangelista Dr. Catherine Jarnevich

Partner

Tom Bates

EARTH SCIENCE APPLIED SCIENCES

Land-cover change and capacity building across Amazonia and beyond

Stephanie Spera, PhD University of Richmond NASA-SERVIR

NASA - SERVIR

What is SERVIR

Space to Village • Working Together Applied Sciences Teams

The Amazon

nature

NEWS FEATURE 25 February 2020

When will the Amazon hit a tipping point?

Scientists say climate change, deforestation and fires could cause the world's largest rainforest to dry out. The big question is how soon that might happen.

Ignacio Amigo

Projected changes in rainfall and climate could radically reduce the Amazon rainforest before the end of this century

Under early 21st century climate (2003-2014)

Under late 21st century climate (2071-2100)

Climate stable – for rainforest

Vulnerable unstable region. May support rainforest or savanna

Guardian graphic. Source: Staal et al, Nature Communications, Obbe Tuinenburg

Yurúa Indigenous Communities 2013

2013 workshop in Yurúa, Peru

50 participants from indigenous groups along the Yurúa headwaters

2014 Climate Change Declaration in follow up workshop

Ecosystem services

Ruth DeFries et al. 2004, Foley et al. 2007

EARTH SCIENCE APPLICATIONS WEEK 2021

regulation

Observed effects of land-clearing on the local hydrologic cycle in the Eastern Brazilian Amazon

Landsat 8 Data

MODIS ET Data

High ET rates

Somewhere in the middle ET-wise

Low ET rates

How has land use and land cover changed?

What are the effects on these land-cover changes on ecosystem services?

How has land use and land cover changed?

Reygadas et al. Under review

Deforestation and degradation Open source tools Transferable knowledge

What are the effects on ecosystem services

Station observations

-888 -888 -888 -BNDO

Minimum temperatures increasing Maximum temperatures increasing Not correlated with forest disturbance Correlated with ENSO & NAO

Capacity building

LENIN - ECUADOR

El área utilizada es en la provincia de Pastaza, cantón Pastaza, Sarayacu. Una área aproximada 1227 Km2.

Es una área con alta presencia de ríos, infraestructura, tierras agrícolas, bosque. Y sobre todo una alta presencia de nubes.

0/	CODED	_MapaDisturbios		Get Link 👻	Save -	Run 🛩	Reset -
ア Jnmute		<pre>Imports (2 entries) var AreaEstudio: Table users/retint var ptsEntrenamiento: Table users/r</pre>	a/Tutorials/CaseStudy1 retinta/Tutorials/TrainingPointsCODED				
	123456789	<pre>////////////////////////////////////</pre>	<pre>//// ALGORITMO CODED ///////////////////////////////////</pre>	 para la implementado por Y. Reygadas y N 1. Área de estudio: por del área de estudio. 	//////////////////////////////////////		
	10 11 12 13 14 15 * <i>i</i> 16	<pre>// Define los datos de entrenamiento var trainingData = ptsEntrenamiento; // Define los parámetros var params = ee.Dictionary({</pre>	 Datos de entrenamiento: CODED requiere correspondientes a un periodo de entrenam un muestreo aleatorio estratificado basado de alta resolución especial disponibles en G suelo debe ser nombrada "label". 	e que el usuario colecto niento seleccionado. E en una combinación d EE. La columna del arc	muestras de stas muestras e mapas de c hivo de punt	e cubierta y i s usualmente cubierta y us os que conti	uso del su e se colect o del suel ene la cut
63	17 18 19	<pre>'consec': 4, // Número de observac 'thresh': 3, // Umbral de cambio ('start': 2000, // Año inicial del</pre>	iones consecutivas debajo del umbal de o residuo de observación normalizado por e periodo de estudio	cambio necesario par el modelo de entrenami	i declarar u Miento RMSE)	una perturba)	ición

o e imágenes pierta o uso del

Mapping changes in real time

Area of Interest Plot

32-Day NDVI 30m (Landsat 8)

Proposed roads

Going global

SERVIR

- Global LCLUC mapping collaboration
- Cross-hub and cross-theme collaborations

Crop Type (Optical & SAR)

Alert systems (Fire, Forest Disturbance)

> Tree Height (GEDI, Sentinel-1, ALOS/PALSAR NISAR)

Scenarios Modelling

LCLUC

Degradation (CCDC, LandtrendR, Machine Learning) Regional Land Cover Monitoring System

Thank you!

sspera@richmond.edu

and thanks to my collaborators D. Salisbury, Y. Reygadas, and V. Galati , and the Amazon Borderlands Spatial Analysis Team at URichmond

EARTH SCIENCE **APPLIED SCIENCES**

Partner Testimonia Video

EARTH SCIENCE **APPLIED SCIENCES**

THANK YOU

