Preparing Key State and Local Health and Air Quality Agencies for Upcoming Earth Observations

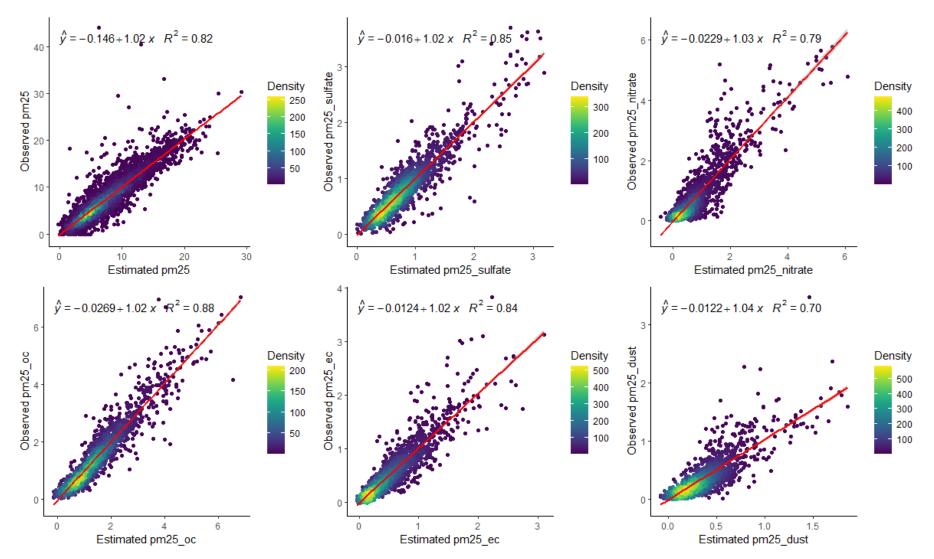
Yang Liu, Jun Wang, Kevin Cromar

October 12, 2021

Project Goals

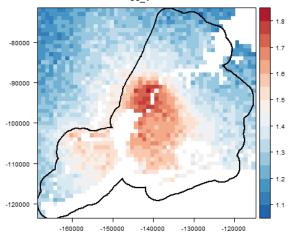
 Prepare air quality and public health stakeholders for data from the nextgeneration satellite instruments such as MAIA, TEMPO, and GOES-R series

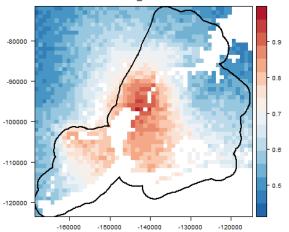
 Use actual or synthetic data of these instruments to demonstrate how the new information can enhance stakeholders' decision support activities

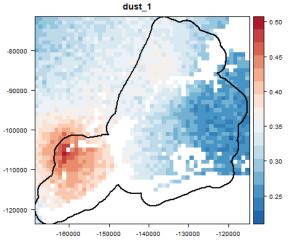

Study Aims after Descoping

- NYC no change after communication
- Decision support systems: (1) Community Air Survey (NYCCAS) - to evaluate how air quality differs across New York City, (2) Syndromic Surveillance of ED visits for emergency response and situational awareness
- Proposed deliverables: (1) generate synthetic MAIA PM2.5 speciation data, and (2) develop daily PM_{2.5} model with GOES-R AOD

We developed a Bayesian downscaler similar to MAIA's operational L4 PM product algorithm for NYC using U. lowa's WRF-Chem simulations in 2018.






Model Prediction Surfaces

Work During NCE

- Communicate with New York City Department of Health and Mental Hygiene on data quality and analytical support to compare with existing methods
- Package PM2.5 product into MAIA L4 netCDF file template
- Complete development of the daily PM2.5 model using GOES-16 AOD data – massive data volume and a potential challenge for stakeholder use
- Generate daily PM2.5 concentrations to support NYC's Syndromic Surveillance program
- Expected end of project ARL: 7 (Functionality Demonstrated)

GA EPD study aims after Descoping

- Change of scope after communication
- Decision support system: CMAQ NO2 simulations
- Proposed deliverables: (1) WRF-Chem simulations of ground level NO2 in 2018; (2) a data fusion model with OMI/TROPOMI, WRF-Chem data, and ground observations as input; (3) gridded predicted MDA1 NO2 concentrations

Work During NCE

- WRF-Chem simulation complete. Compile other data in Emory.
- Process extra NO2 measurements from a GA EPD research site to enhance spatial coverage
- Complete NO2 model development
- Work with GA EPD on result interpretation and evaluate value of information
- Expected end of project ARL: 7 (Functionality Demonstrated)

Other research products last year

Manuscripts:

- Vu B, Bi J, Wang W, Huff A, Kondragunta S, Liu Y. Application of geostationary satellite and high-resolution meteorology data in estimating hourly PM2.5 levels during the Camp Fire episode in California. Remote Sen Environ. Revision submitted.
- Gladson L, Garcia N, Bi J, Liu Y, Cromar K. Evaluating the Utility of High-Resolution Spatiotemporal Data in Estimating Local Air Pollution Exposures in 92 California Cities from 2015-2018. Atmosphere. Submitted.
- Zhang, H., J. Wang, et al., Development of UI-WRF-Chem for MAIA satellite mission: case demonstrations. Geoscientific Model Development. In preparation.
- Presentations in ISEE (Cromar), Asthma, Airways and the Environment Conference (Cromar), MAC-MAQ (Liu), NIEHS Meeting on Integrating Multiscale Geospatial Environmental Data into Large Population Health Studies (Liu)