

AN EARLY WARNING SYSTEM FOR VECTOR-BORNE DISEASE RISK IN THE AMAZON

NASA PROJECT NNX15AP74G

William Pan, Duke University

Health & Air Quality Applications Program Review, October 2021, Virtualtown, USA

Project Summary

OBJECTIVE

Develop an **early warning system for malaria** in the Peruvian Amazon and evaluate the expansion of the system to other diseases and Amazon regions.

P. falciparum incidence

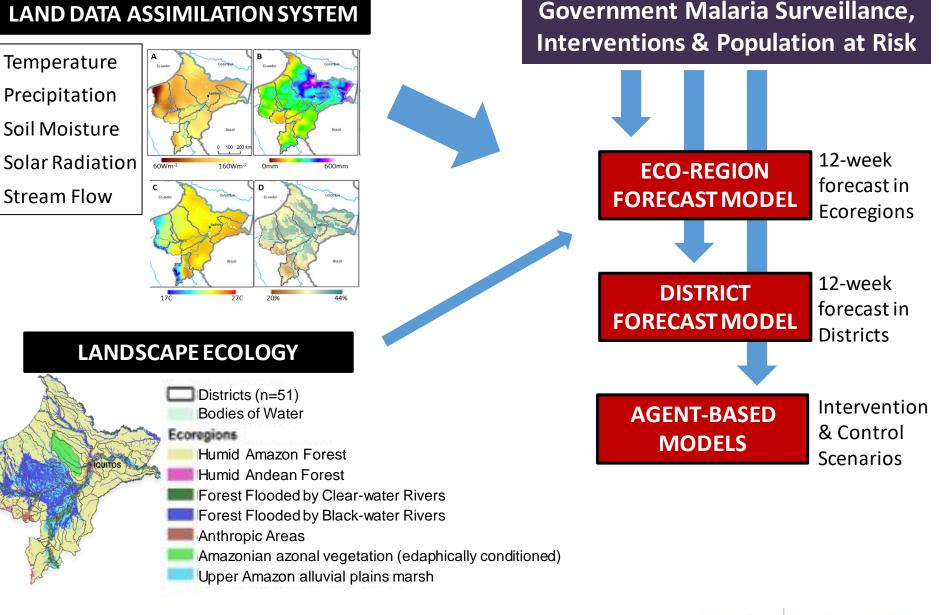
TEAM

William Pan, Duke; Mark Janko, University of WA; Ben Zaitchik, Johns Hopkins; Carlos Mena, Francesco Pizzitutti, Universidad San Francisco de Quito, Ecuador; Andres Lescano, Gabriela Salmon-Mulanovich, Universidad Peruana Cayetano-Heredia; Beth Feingold, SUNY-Albany; Cesar Munayco, CDC-Peru, Ministry of Health

10 15 20 30 40.7

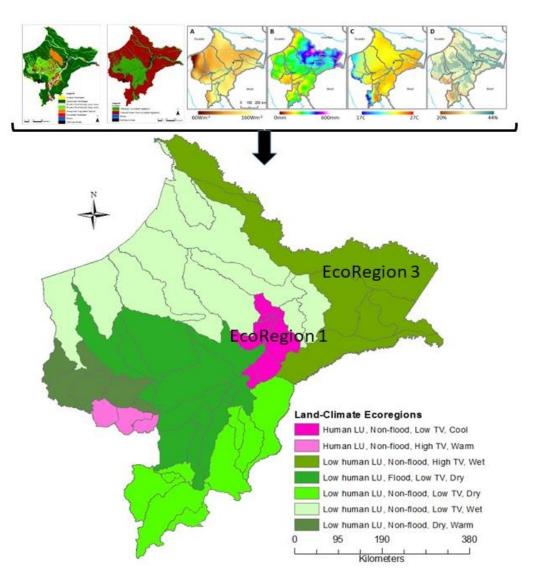
Summary of Accomplishments

- We forecast malaria outbreaks in small, administrative districts 12 weeks in advance with ~90% sensitivity
- IMPLEMENTATION:
 - LDAS implementation in Ecuador in the Institute of Geography at USFQ in partnership with the Ministry of Public Health
 - Forecasting capacities to be adopted by CDC-Peru and CLIMA (Climate and Infectious Disease Laboratory at UPCH, Lima)
 - Partnership with the InterAmerican Institute for Global Change Research
- Additional Funding:
 - Finalist for EU "Early Warning for Epidemics" prize (\$5 million euros)
 - Newly funded R01 from NIAID (\$2.5 million) for expansion & cross-border malaria
- Publications: >10 (2 more in review/resubmit)
- Fully costed or encumbered


The rest of this presentation ...

Summary of Methods

- How do we achieve 90% sensitivity in detecting malaria outbreaks?
 - LDAS
 - Ecoregion analysis & District level forecast models


Project Plans after NASA (R01, EC Prize)

EcoRegion Forecast

- LDAS & Ecosystem data are combined to identify EcoRegions
- Malaria & Population data are aggregated to the EcoRegion level
- Unobserved Component Model (UCM) used to conduct forecasts

$$y_t = \mu_t + \gamma_t + \varphi_t + r_t + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{j=1}^m \beta_j x_{jt} + \varepsilon_t$$

 $y_t \simeq malaria cases/1000 during week t$

 $\mu_t, \gamma_t, \varphi_t$, and r_t represent the trend, seasonal, cyclical and autoregressive components

 ϕ_i is an autoregressive term capturing the momentum of infections

 β_i is the unknown effect for explanatory factors

 ε_t is the error term

MINSA-defined outbreak level

EcoRegion Forecast

Real-time data reporting (top) and forecast (bottom) for EcoRegion 1 from May-July 2018 in Loreto, Peru

Forecast Performance, 2016

Forecast weeks		ТР	FN	FP	ΤN	Se	Sp
Eco-Region 1	1-4	3	0	0	10	100%	100%
	5-8	3	0	1	9	100%	90%
	9-12	3	0	3	7	100%	70%
Eco-Region 3	1-4	1	1	1	10	50%	91%
	5-8	1	1	1	10	50%	91%
	9-12	2	0	3	8	100%	73%

TP=True Pos; FN=False Neg; FP=False Pos.; TN=True Neg.

District Level Forecast

Root-mean square prediction error, Fernando Lores and Ramon Castilla districts, 2016-19

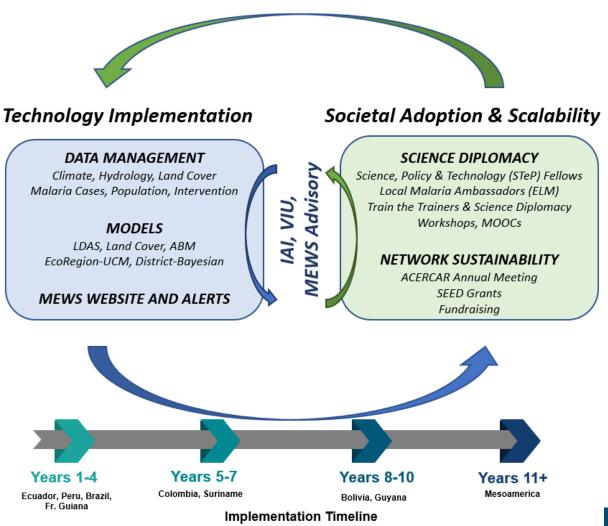
Sensitivity & Specificity of 8-week district forecasts, 2007-2019

District	Se	Sp				
Ecoregion 1						
Iquitos	88%	84%				
Fernando Lores	51%	84%				
Punchana	89%	74%				
Belen	79%	70%				
San Juan Bautista	97%	67%				
Jenaro Herrera	94%	98%				
EcoRegion 3						
Ramon Castilla	57%	79%				
Pebas	54%	68%				
Yavari	55%	63%				
San Pablo	60%	76%				

Hierarchical Bayesian spatiotemporal logistic model

$y(s,t) = \mathbf{x}^{T}(s,t)\beta + \theta(s,t)$

 $y(s,t) \sim \#$ malaria cases in district s during week t $x(s,t) \sim$ vector of covariates & lagged predictors $\theta(s,t) \sim$ spatio-temporally correlated random effects


Life After NASA—R01 Malaria EWS

- NIAID R01: Improving Response to Malaria Outbreaks in Amazon-Basin Countries
 - 5 years (Sept 1, 2021-Aug 31, 2026), \$2.5 million direct costs
- **Aim 1.** To evaluate (i) MEWS expansion to the Brazilian and Ecuadorian Amazon and (ii) downscaling of forecasts to subdistrict levels
- **Aim 2.** To evaluate the relationship between infrastructure, socioeconomic networks and migration across international border (Brazil-Peru, Ecuador-Peru) with malaria incidence rates
- **Aim 3.** Evaluate scenarios of potential malaria interventions along borders to jointly reduce malaria rates

Life After NASA—EU Prize

A Consortium to Effectively Respond to Climate-Attributable Risks-Malaria Elimination (ACERCAR-ME)

- Creation of CoP & build Governance Structure around climate-health through STeP Fellow Program led by IAI
- Technology Implementation through partnerships (USFQ and UPCH as model)
- Seeking support from IADB, World Bank, Gates Foundation (& NASA?)

THANK YOU!

.

