Use of Remote Sensing Data to Improve Air Quality Decision Support Systems Used to Protect Public Health

Arastoo Pour Biazar¹, Richard T. McNider¹,

Maudood Khan², Andrew White¹, Shuang Zhao¹, Christopher Hain³

Collaborators

Zac Adelman (LADCO), Jeremy Avise (CARB), Majiong Jiang (CARB), Bright Dornblaser (TCEQ), James Boylan (GAEPD), Jonathan Pleim (USEPA), Bradley T. Zavodsky (NASA), Susan Alexander (UAH)

- 1. University of Alabama in Huntsville (UAH)
- 2. Booz Allen Hamilton
- 3. National Aeronautics and Space Administration (NASA)
- 4. The Lake Michigan Air Directors Consortium (LADCO)
- 5. California Air Resources Board (CARB)
- 6. Texas Commission on Environmental Quality (TCEQ)
- 7. Georgia Environmental Protection Division (Georgia-EPD)
- 8. U.S. Environmental Protection Agency (USEPA)

Presented at:

Health and Air Quality Applications Program Review

September 19, 2022

Virtual Meeting

PROJECT INFORMATION

TOPIC:	Use of Remote Sensing Data to Improve Air Quality Decision Support Systems Used to Protect Public Health
POP:	8/24/2018 - 8/23/2021 (ROSES17-A.39) – NCE till 8/23/2022 (Final Report)
PI: Co-ls:	Arastoo Pour Biazar (University of Alabama in Huntsville) Richard T. McNider, Andrew White, Shuang Zhao (UAH)
Partners:	California Air Resources Board (CARB), USEPA, Texas Commission on Environmental Quality (TCEQ), Georgia Environmental Protection Division (GA- EPD), The Lake Michigan Air Directors Consortium (LADCO - representing states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin).
Earth Obs./Models: NASA's GOES Product Generation System (skin T, surface insolation and albedo, cloud top T, cloud albedo); MODIS/VIIRS products (Skin Temperature, surface insolation and albedo); GOES GLM; WRF/SMOKE/CMAQ model.	
Objective:	To employ NASA assets and satellite products to improve the air quality management Decision Support Tools (DSTs) used in defining emission control strategies for attainment of air quality standards.

SPECIFIC OBJECTIVES

In This Project NASA Assets and Satellite Data Will Be Used to Improve the Quality and Accuracy of Retrospective Baseline Simulation in Which Proposed SIP Emission Reductions Are Tested

Upgrading Data Generation and Archiving System

Upgrading GOES Product Generation System (GPGS): Collaborating with the NASA's the Short-term Prediction Research and Transition (SPoRT) Center, GPGS is being recoded to process GOES-16, 17, data.

Improving Representation of Physical Atmosphere

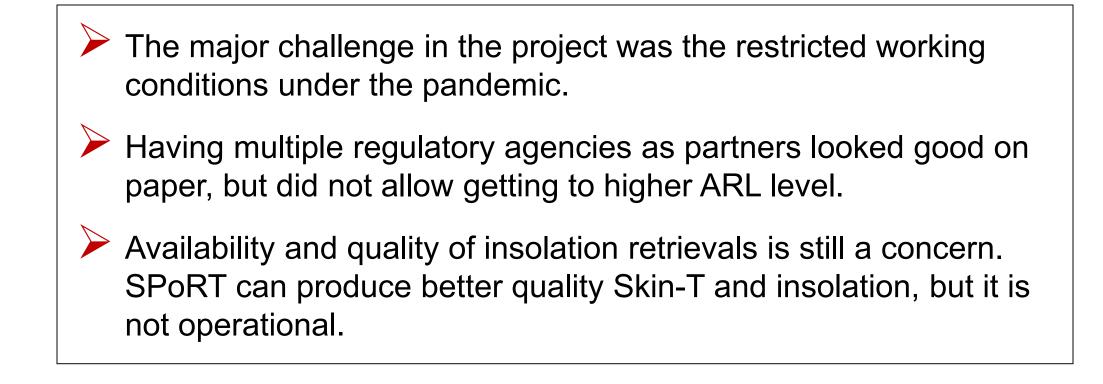
- Improved Characterization of Surface Energy Budget: Using satellite derived skin temperature to retrieve soil moisture and improve surface evapotranspiration performance in WRF.
- Improving Boundary Layer Development in the Model: By improving BL moisture and temperature structure.
- Improving Model Cloud Field: Assimilating satellite observed clouds in WRF.

Improving Emission Estimates in AQ Model

Utilization of Satellite Derived Lightning Generated NO (LNOx) Emissions: This activity utilizes newly available lightning optical energy from the Geostationary Lightning Mapper (GLM) to produce lightning-generated NO emissions input for air quality models.

MILESTONES

Milestone Statement	Date
Commenced work on the project	Sept. 2018
Updated insolation retrievals, Cloud Assimilation System (CAS) integrated in WRF-Chem and WRF-CMAQ, and GLM-LNOx estimates performed (ARL 3)	Sept. 2019
Insolation products evaluated and used in simulations using CAS, results assessed, initial integration and verification completed (ARL4)	Sept. 2020
CAS was tested in WRF/SMOKE/CMAQ AQM system, used in semi- operational setting and improvements demonstrated (ARL 6)	sept. 2021
ARL 7 achieved	Aug. 2022
Papers published and presented at international conferences	Dec. 2018, Aug. 2022


RESULTS/ACHIEVEMENTS

- Revised GOES Product Generation System (GPGS) for GOES-R
- Developed/implemented/tested/evaluated GLM-LNOx Processing System
- Improved/tested/evaluated Cloud Assimilation System (CAS)
- Skin-T assimilation within P/X implemented and tested
- In collaboration with end-users multi-year air quality simulations performed and results published
- Software tools were documented and released to end-users (EPA/TCEQ/LADCO/GaEPD)
- Had end-users engagement/involvement throughout the project.

RISKS & ISSUES

Publications

Wu Y., A. Pour-Biazar, W.J. Koshak, P. Cheng, 2022. LNOx Emission Model for Air Quality & Climate Studies Using Satellite Lightning Mapper Observations. *Journal of Geophysical Research: Atmospheres*, (submitted).

Cheng P, A. Pour-Biazar A, Wu Y., Kuang S., McNider R.T. Utility of Geostationary Lightning Mapper Estimated Lightning NOx Emissions in Air Quality Studies. (To be submitted, *Atmospheric Chemistry and Physics*)

Cheng P, Pour-Biazar A, White AT, McNider RT. Improvement of summertime surface ozone prediction by assimilating Geostationary Operational Environmental Satellite cloud observations. *Atmospheric Environment*. 2022 Jan 1;268:118751. <u>https://doi.org/10.1016/j.atmosenv.2021.118751</u>

White AT, Pour-Biazar A, Doty K, McNider RT. Iterative assimilation of geostationary satellite observations in retrospective meteorological modeling for air quality studies. *Atmospheric Environment*. 2022 Jan 11:118947. <u>https://doi.org/10.1016/j.atmosenv.2022.118947</u>

Wang, B., Kuang, S., Pfister, G.G., Pour-Biazar, A., Buchholz, R.R., Langford, A.O. and Newchurch, M.J., 2021. Impact of the 2016 Southeastern US Wildfires on the vertical distribution of ozone and aerosol at Huntsville, Alabama. *Journal of Geophysical Research: Atmospheres*, 126(9), p.e2021JD034796. <u>https://doi.org/10.1029/2021JD034796</u>

McNider, R.T. and Pour-Biazar, A., 2020. Meteorological modeling relevant to mesoscale and regional air quality applications: a review. *Journal of the Air & Waste Management Association*, 70(1), pp.2-43. <u>https://doi.org/10.1080/10962247.2019.1694602</u>

Publications (continued ...)

Cheng, P., Pour-Biazar, A., McNider, R.T. and Mecikalski, J.R., 2020. Validation of GOES-Based Surface Insolation Retrievals and Its Utility for Model Evaluation. *Journal of Atmospheric and Oceanic Technology*, 37(4), pp.553-571. <u>https://doi.org/10.1175/JTECH-D-19-0058.1</u>

- McNider, R.T., A. Pour-Biazar, K. Doty, A.T. White, Y. Wu, M. Qin, Y. Hu, T. Odman, P. Cleary, E. Knipping, B. Dornblaser, P. Lee, C. Hain, S. McKeen, 2018: Examination of the Physical Atmosphere in the Great Lakes Region and its Potential Impact on Air Quality Over-Water Stability and Satellite Assimilation. J. Appl. Meteor. Climatol., 57(12), pp. 2789-2816. <u>https://doi.org/10.1175/JAMC-D-17-0355.1</u>
- Odman, T., A.T. White, K. Doty, R.T. McNider, A. Pour-Biazar, M. Qin, Y. Hu, E. Knipping, B. Dornblaser, Y. Wu, 2019: Examination of nudging schemes in the simulation of meteorology for use in air quality experiments: Application in the Great Lakes region. J. Appl. Meteor. Climatol. <u>https://doi.org/10.1175/JAMC-D-18-0206.1</u>.
- Qin, M., Yu, H., Hu, Y., Russell, A.G., Odman, M.T., Doty, K., Pour-Biazar, A., McNider, R.T. and Knipping, E., 2019. Improving ozone simulations in the Great Lakes Region: the role of emissions, chemistry, and dry deposition. Atmospheric Environment. 202, pp. 167-179. <u>https://doi.org/10.1016/j.atmosenv.2019.01.025</u>
- Zhang, R., White, A.T., Pour Biazar, A., McNider, R.T. and Cohan, D.S., 2018. Incorporating GOES satellite photosynthetically active radiation (PAR) retrievals to improve biogenic emission estimates in Texas. *Journal of Geophysical Research: Atmospheres*, 123(2), pp.1309-1324. https://doi.org/10.1002/2017JD026792
- White, A.T., Pour-Biazar, A., Doty, K., Dornblaser, B. and McNider, R.T., 2018. Improving cloud simulation for air quality studies through assimilation of geostationary satellite observations in retrospective meteorological modeling. Monthly Weather Review, 146(1), pp.29-48. <u>https://doi.org/10.1175/MWR-D-17-0139.1</u>

Thank You

