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A. Executive Summary 
 
This Rapid Prototyping Capability (RPC) project uses NASA research satellite ozone and aerosol 
products from AURA/OMI and Terra/MODIS as boundary and initial conditions for Community Multi-scale 
Air-Quality (CMAQ) calculations of air quality over the U.S. in August 2006. The extensive ozonesonde 
observations during IONS06 and the EPA surface network provide validation data for chemical model 
evaluation while the national meteorological networks provide evaluation data for the physical model 
calculations. 
 
Satellite observations constrained CMAQ either directly from the satellite fields or from the RAQMS CTM 
that had assimilated total ozone fields from OMI. Using the NASA satellite data results in improved model 
calculation of aerosols in the boundary layer and improved ozone, especially in the middle and upper 
troposphere but also some small improvement in the boundary layer. Use of additional satellite data (e.g. 
NO2 and HCHO) could provide further improvements. 
 
B. Project Description 
 
The overall goal of the Rapid Prototyping Capability (RPC) is to provide for an accelerated simulation and 
testing of candidate configurations with current and future Earth observation mission measurements and 
research results in accordance with NASA’s 2006 Strategic Plan: “NASA’s Applied Sciences program will 
continue the Agency’s efforts in benchmarking the assimilation of NASA research results into policy and 
management decision-support tools that are vital for the Nation’s environment, economy, safety, and 
security.” 
 
The specific purpose of this RPC Experiment is to design an air-quality forecasting system (consisting of 
Georgia Environmental Protection Division, Air Protection Branch CMAQ model decision tool, NASA 
Earth Science Research Results (NESRR) from AURA/OMI, AQUA and Terra/MODIS and test its 
feasibility and value (F&V). 
 
C. Decision Support System Overview 
 

1. Background 
 

Established through an act of Congress (i.e., Clean Air Act or CAA) in 1970, the U.S. Environmental 
Protection Agency (EPA) is the federal entity responsible for protecting public health through 
development and enforcement of environmental standards. Over the years, the U.S. EPA has established 
a sophisticated and reliable air quality monitoring network and an extensive array of statistical, analytical, 
and physical models. These data, models, and analysis tools collectively represent our understanding of 
human activities and natural processes, which govern the generation, transport, and transformation of 
pollutants in the atmosphere. The Air Quality Management Decision Support System (AQMDSS), a 
computational framework, contains the individual elements that form the basis for the proposal. Generally, 
AQMDSS comprises of a mesoscale atmospheric model, an air quality model, and an emissions model. 
Federal, state, and local agencies, and other stakeholders extensively use the system for development 
and evaluation of emission control strategies (i.e. State Implementation Plans or SIPs) aimed at 
improving air quality and protecting public health. They also provide short-term forecasts of air pollution 
events that might pose a health hazard for the public, as well as sensitive groups (e.g., children, elderly). 
State and local agencies routinely use the modeling results to issue health advisories. The Air Protection 
Branch (APB) of the Georgia Environmental Protection Division (EPD), a participant in this study, issues 
daily air quality (i.e., ozone and particulate matter) forecasts using results from CMAQ-CTM. The study 
will demonstrate operational viability and scientific necessity for assimilating satellite-based 
measurements of gas and aerosol species within Air Quality Models (AQMs), which are an important 
component of AQMDSS. 
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2. DSS components 
 

The subject of this research, AQMDSS, is comprised of Community Multi-scale Air Quality (CMAQ) 
Chemical Transport Model (CTM) or Models-3; Mesoscale Meteorological model (MM5); and Sparse 
Matrix Operating Kernel for Emissions (SMOKE). Dynamical data assimilating meteorological models 
(also referred to as mesoscale models) such as MM5 or WRF (Weather Research Forecast) generally 
supply meteorological fields for CMAQ-CTM. Meteorology Chemistry Interface Processor (MCIP) creates 
input files for CMAQ-CTM. Its main function is to read meteorological fields simulated by the mesoscale 
model, compute dry deposition velocities, and other variables that CMAQ-CTM needs but are not 
available from the mesoscale model, and output data in Models-3 IOAPI format. The SMOKE emissions 
processor, which is capable of processing emissions from anthropogenic (i.e., area, non-road, on-road, 
point) and biogenic sources, creates gridded, temporalized, and speciated emission files required by 
CMAQ-CTM. A variety of agencies and organizations including Clean Air Markets Division and 
Technology Transfer Network of EPA, California Air Resources Board, and Texas Commission on 
Environmental Quality supply the emission inventories and associated input. 

 
3. Systems engineering approach 
 

Although satellite products undergo extensive quality assurance checks, we consider it prudent to design 
and develop an integrated model-observation system with additional quality checks. Major challenges in 
using NASA satellite data within CMAQ-CTM include excessive loss of data due to cloud contamination, 
and low temporal resolution, since polar orbiting satellites record data over a particular point once or twice 
a day. Hence, we have developed a series of quality control and re-sampling algorithms, as well as 
software that will allow re-gridding of satellite data onto the modeling grid Figure 1). 
 

 
Figure 1- Flowchart representing the approach taken in merging the satellite data with model input 
data. 
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D. NASA Earth Science research products 
 
We used the following NASA datasets to build initial and boundary conditions for the air quality model.  
 

1. Ozone Monitoring Instrument (OMI) aboard the Aura satellite measures vertically-resolved 
concentration of Ozone (O3), which has a nominal ground footprint of 13 x 48 km2 at nadir. We 
achieve complete global coverage in one day. Dr. Xiong Liu at Goddard Earth Sciences and 
Technology Center (GEST) developed the data for this project. 

2. MODIS- Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua 
satellites provide daily Aerosol Optical Depth (AOT). We have used Level 2 aerosol product, 
which has an approximate resolution of 10 km at nadir. This dataset is available from 
http://ladsweb.nascom.nasa.gov/data/.  

3. RAQMS- Three-dimensional output from the Real-time Air Quality Modeling System (RAQMS), 
[R. B. Pierce, et al., 2003; R. B. Pierce, et al., 2007] builds O3 boundary condition for CMAQ-
CTM.  

 
E. Description of the modeling experiment 
 

1. General Overview 
 

MM5, SMOKE, and CMAQ modeling systems conducted the modeling of atmospheric dynamics and 
chemistry observed during August 2006. We conducted the simulations on a 36-km resolution with a 
Lambert Conformal map projection and origin at 47 N and 90 W and true latitudes at 33 N and 45 N. It 
has 164 cells in the east-west and 148 cells in the north-south direction. 50 mb is the top of the modeling 
grid and 39 vertical layers of varying thickness. A set of four air-quality model simulations (Table 1) 
demonstrates improvement in air quality model predictions that can be achieved when satellite data 
and/or a global chemical transport model is used to provide lateral boundary condition for CMAQ. We 
compare the meteorological and air quality model performance to land-based observation stations (i.e., 
EPA surface monitors and NOAA ozonesondes). 
 
Table 1- Description of four air-quality model simulations. 
 
Name of the simulation Description 

CNTRL 

A control simulation in which CMAQ is initialized only once at 
the beginning of the simulation and runs continuously for the 
entire simulation period using the standard boundary 
condition 

SATBC 
A simulation similar to control except that BC was 
constructed by merging satellite observations and model 
fields  

SATICBC 
A simulation similar to SAT_BC but re-initializing the model 
every 24 hours by assimilating satellite observations into the 
model fields 

RAQMSBC 
A simulation similar to the control but a continuous BC is 
constructed from Real-time Air Quality Modeling System 
(RAQMS) global model  

 
2. Air quality modeling (CMAQ-CTM) configuration 
 

CMAQ-CTM [Byun and Schere, 2006; Dennis, et al., 1996] version 4.6 contains state-of-the-science 
parameterization of atmospheric processes affecting transport, transformation, and deposition of 
pollutants such as ozone, particulate matter, airborne toxics, and acidic and nutrient pollutant species. It 
incorporates output fields from the meteorological (e.g., MM5) and emissions (e.g., SMOKE) modeling 
systems and several other data sources through special processors. The meteorological data is 
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processed using Meteorology Chemistry Interface Processor (MCIP) [Otte, et al., 2004], initial and 
boundary conditions through ICON and BCON and clear sky photolysis rate using JPROC. Initial and 
boundary condition processors allow the use of a gridded concentration field as well as the species 
concentration profiles, which are available with the installation. JPROC generates the photolysis rate 
reference table under clear sky conditions. 
 
We used MCIP version 3.3 to create meteorological input files for CMAQ-CTM. Most meteorological 
variables pass through directly from the MM5 output fields. MCIP computed the others, such as dry 
deposition velocities. A set of predefined vertical profiles, which are available with the CMAQ installation, 
generate initial and boundary conditions for the 36-km domain. The processor JPROC generates the 
clear sky photolysis rates. We performed the process using modified extraterrestrial radiation data from 
the World Meteorological Organization (WMO) [Chang, et al., 1990] and O2 and O3 absorption cross-
section data from NASA [DeMore, et al., 1994]. Table 2 shows the CMAQ-provided scientific options for 
various atmospheric processes (e.g., gas-phase chemistry, advection). 
 
  
Table 2- Scientific options for various CMAQ-provided atmospheric processes. 
 
Physical Process Reference 
Horizontal and vertical advection YAMO 
Horizontal diffusion MULTISCALE 
Vertical diffusion ACM2 
Gas-phase chemistry and solver EBI_CB4 
Gas and aqueous phase mechanism CB4_AE3_AQ 
Aerosol chemistry AERO3 
Dry deposition AERO_DEPV2 
Cloud dynamics CLOUD_ACM 

 
3. Meteorological modeling 
 

We conducted the meteorological modeling for the study period using the fifth-Generation Penn 
State/NCAR Mesoscale Model (MM5) [Dudhia, 1989; Grell, et al., 1995]. Maintained by the National 
Center for Atmospheric Research (NCAR), MM5 is the last in a series of Mesoscale models first 
developed at Penn State in the early 1970's [Anthes and Warner, 1978]. Since that time, it has e to 
broaden its usage. These changes include: (1) a multiple-nest capability; (2) non-hydrostatic dynamics, 
which allow the model to be used at a few-kilometer scale; (3) multi-tasking capability on shared- and 
distributed-memory machines; (4) four-dimensional data-assimilation (FDDA) capability, and (5) multiple 
physics options. Meteorological field development for air quality modeling application uses this model 
extensively.  
 
Like any other prognostic meteorological model, MM5 requires a significant amount of terrestrial (i.e., 
topography, Land Use/Land cover) and atmospheric data (e.g., gridded analysis fields, which include at a 
minimum sea-level pressure, wind, temperature, relative humidity, and observations that contain 
soundings and surface reports). This modeling project used the following datasets: 
 

a) Surface elevation, Land Use/Land Cover (LULC), soil type, and other terrestrial datasets from 
United States Geological Survey (USGS); 

b) NCEP ETA gridded-analysis data at 40-km resolution archived at 3-hour intervals available at 
http://dss.ucar.edu/datasets/ds609.2; 

c) Surface (land and ship) and upper air observational data archived at 3- and 6-hour intervals at 
available at http://dss.ucar.edu/datasets/ds464.0; 

d) Hourly surface observations for over 1,000 stations in U.S. and Canada available at 
http://dss.ucar.edu/datasets/ds472.0 
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We conducted modeling simulations using MM5 version 3.7 and performed data processing in six-day 
segments beginning July 1 and ending October 3. The NCEP ETA gridded-analyses data is first 
processed through the program PREGRID and mapped onto the 36-km via the REGRIDDER. The 
analyses fields with the help of the program LITTLE_R incorporate surface, ship, and upper air data. 
Finally, INTERPF interpolates pressure level fields generated by LITTLE_R onto MM5 sigma coordinates. 
We based the MM5 model configuration (Table 3) on a brief literature review of recent modeling projects 
in support of air quality management activities.  
 
 
Table 3- MM5 Model Configuration. 
 

Physics options  

Nesting Type One-way 
Numerical Time Step 90 sec 
Cumulus parameterization Grell 
PBL scheme MRF 
Microphysics Reisner 1 
Radiation scheme RRTM scheme 
Land Surface scheme Noah-LSM 
Convection scheme KF2 
Observation nudging None 
3-D Grid analysis nudging Yes 
3-D Grid analysis nudging time interval 3-hour 
3-D Grid analysis nudging co-efficient GU=2.5x10-4, GV=2.5x10-4, GT=2.5x10-4, GQ=1.0x10-5 

Surface Analysis nudging Yes 
Surface Analysis nudging time interval 3-hour 
Surface Analysis nudging co-efficient GU=2.5x10-4, GV=2.5x10-4

 
METSTAT software, developed by the ENVIRON corporation, evaluated the model performance 
(http://www.camx.com/files/metstat.15feb05.tar.gz). It computes surface statistics for temperature, wind 
speed and direction, and humidity. The metrics include: Bias Error (B), Gross Error (E) and Root Mean 
Square Error (RMSE), Systematic Root Mean Square Error (RMSEs), Unsystematic Root Mean Square 
Error (RMSEu) and Index Of Agreement (IOA). Table 4 shows the mathematical formulation of these 
variables.  
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Table 4- Metrics for evaluating meteorological model performance. 
 

Metrics Formulation 
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Table 6 illustrates the monthly average performance statistics for August 2006. In an effort to identify 
model biases and error over different regions of the domain, we have computed statistics for sub-regions 
shown in Figure 2. The results of the statistical analysis show that the simulation captures meteorological 
conditions observed during the study period with the adequate level of accuracy. Performance statistics 
for most days are within [Emery, et al., 2001]’s proposed benchmarks (Table 5).  
 
Table 5- Emery’s (2001) proposed benchmarks. 
 

Statistical Measure Benchmark 
Wind Speed Bias (m/s) <0.5 
Wind Speed Total RMSE (m/s) 2.0 
Wind Speed Index of Agreement 0.6 
Wind Direction Gross Error (degree) 30.0 
Wind Direction Bias (degree) <10.0 
Temperature Bias (Kelvin) <0.5 
Temperature Gross Error (degree) 2.0 
Temperature Index of Agreement 0.8 
Humidity Bias (g/kg) <1.0 
Humidity Gross Error (g/kg) 2.0 
Humidity Index of Agreement  0.6 

 
 
To examine whether the simulation could capture large-scale synoptic features, we compared the 
modeling results against weather charts from UNISYS web site [http://weather.unisys.com/]. Figure 3 
shows weather charts for July 15 alongside MM5 result. The model wind speed, direction, and 
temperature are in reasonable agreement with observations. The model is able adequately captures the 
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stationary front, which passed through Dallas Fort Worth on August 21 and 22. The slow-moving system 
extended all the way to east coast and was associated with high ozone episode and sporadic cloudiness.  
 
 

 
Figure 2- Five sub-regions for surface evaluation. 
 
 
Table 6- Monthly average performance statistics of meteorological simulations for August 2006. 
 

CENRAP MANEVU MWRPO VISTAS WRAP
Wind Speed Mean OBS (m/s) 2.97 2.70 2.49 2.05 3.24
Wind Speed Mean PRD (m/s) 2.47 2.35 2.41 1.94 2.43
Wind Speed Bias (m/s) -0.50 -0.35 -0.09 -0.11 -0.81
Wind Speed Gross Error (m/s) 1.26 1.48 1.17 1.21 1.64
Wind Speed RMSE (m/s) 1.65 2.03 1.50 1.54 2.11
Wind Speed Sys RMSE (m/s) 1.35 1.67 1.14 1.24 1.81
Wind Speed Unsys RMSE (m/s) 0.94 1.13 0.97 0.91 1.09
Wind Speed IOA      0.73 0.59 0.70 0.68 0.66
Wind Direction Mean OBS (deg) 149.90 189.95 167.60 160.32 255.55
Wind Direction Mean PRD (deg) 151.30 203.67 171.11 164.80 246.42
Wind Direction Bias (deg) 2.77 4.91 4.53 4.84 6.16
Wind Direction Gross Error (deg) 25.72 27.81 24.58 33.14 43.26
Temperature Mean OBS (K) 298.38 294.37 294.96 299.75 294.38
Temperature Mean PRD (K) 298.61 293.58 294.47 300.10 294.01
Temperature Bias (K) 0.23 -0.79 -0.50 0.35 -0.38
Temperature Gross Error (K) 2.08 2.09 2.08 2.11 2.99
Temperature RMSE (K) 2.81 2.70 2.68 2.85 3.87
Temperature Sys RMSE (K) 1.02 0.85 0.82 0.99 0.54
Temperature Unsys RMSE (K) 2.60 2.53 2.53 2.66 3.82
Temperature IOA    0.95 0.92 0.91 0.90 0.93
Humidity Mean OBS (g/kg) 14.38 11.54 12.71 16.37 8.13
Humidity Mean PRD (g/kg) 13.24 11.21 11.91 15.23 7.21
Humidity Bias (g/kg) -1.13 -0.33 -0.81 -1.14 -0.92
Humidity Gross Error (g/kg) 1.64 1.12 1.42 1.71 1.53
Humidity RMSE (g/kg) 2.08 1.44 1.77 2.17 2.03
Humidity Sys RMSE (g/kg) 1.23 0.69 1.10 1.28 1.32
Humidity Unsys RMSE (g/kg) 1.64 1.23 1.35 1.73 1.53
Humidity IOA       0.86 0.84 0.79 0.76 0.86  
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Figure 3- Weather charts for July 15 alongside MM5 result. The model wind speed, direction, and 
temperature are in reasonable agreement with observations. 
 

4. Emissions processing 
 

Emission inventories are typically available with an annual or daily total emissions value for individual 
emissions sources or source categories. Since air quality models require emissions data on an hourly 
basis for each model grid-cell and species, emission processors convert the available emissions data into 
a form the air quality model can ingest. The Sparse Matrix Operator Kernel Emissions (SMOKE) 
processor [Coats, 1996; Houyoux, et al., 2000] is one particular tool, and it created gridded, temporalized, 
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and speciated emission files for this project. SMOKE is capable of generating temperature-sensitive 
mobile source emission factors using EPA’s MOBILE6 emission factors model. It is also capable of 
generating biogenic emissions for this research work with the help of Biogenic Emissions Inventory 
System (BEIS) version 3.09 [Guenther, et al., 2000; T. Pierce, et al., 1998]. In addition to large amounts 
of source-specific data, certain aspects of emissions processing require meteorological variables. The 
meteorological model provided the variables and included daily surface temperature for calculating mobile 
source emission factors; temperature and radiation fields for calculating biogenic emissions; and 
Planetary Boundary Layer (PBL) height, surface heat flux, wind speed, and temperature for estimating 
plume rise for point sources. 
 
In the absence of any consolidated annual emissions inventory for 2006, we are using the 2002 Annual 
Emission Inventory developed by Regional Planning Organizations (RPOs) in response to regulatory 
requirements established under the Regional Haze Rule (RHR). We are accounting for on-road mobile 
source emissions reductions; however, these reductions will likely change due to fleet turnover. We are 
also using the 2006 Continuous Emissions Monitoring (CEM) data for Electricity Generating Units (EGUs) 
compiled by EPA’s Clean Air Markets Division (CAMD). Given the overall uncertainty in emission 
estimates, determining the emission reduction in two major source categories provides us with a 
reasonable estimate of emissions for this research work. Table 7 illustrates the daily average emission 
totals and spatial plots of NOx, VOC, total Carbon, SO2, NH3, and CO.  
 
 
Table 7- Domain-wide daily emission totals in tons per day. 
 

 
 

5. Pre-processing of satellite/ozonesonde data 
 

5a. Processing of ozonesonde and OMI satellite observations for CMAQ-CTM  
 

The Ozone Monitoring Instrument (OMI) on the Aura satellite measures the total columns of O3 with a 
nominal ground footprint of 13x48 km2 at nadir. Essentially, we achieve complete global coverage in one 
day. 270-330 nm OMI radiances (currently an off-line data product) (Liu et al., 2005) deliver O3 
concentrations at 24 ~2.5-km thick layers from surface to ~60 km. Instrumental calibration error and 
inadequate forward modeling (e.g., aerosols, clouds) significantly reduce the information retrieved in the 
lower troposphere. 
 
A “drop-in-box” method resamples daily OMI O3 measurements onto the 36-km equal area CMAQ-CTM 
grid. CMAQ-CTM grids with center points that fall within this specific OMI pixel assign the OMI O3 value. 
A CMAQ grid that receives more than one OMI O3 value applies a simple average to get a mean value. 
The original OMI O3 data set has already filtered out some unreasonable values, and we have not applied 
any further filtering criteria yet. The nearest neighbor re-sampling algorithm fills in data that might have 
been lost due to cloud contamination Finally, OMI O3 profiles, available at constant pressure surfaces, 
vertically interpolate onto the 39 sigma-P pressure layers of CMAQ-CTM model. Figure 4 illustrates this 
process in the horizontal domain, and Figure 5 illustrates the vertical dimension. 
 
 
 
 
 

NOX VOC CARBON SO2 NH3 CO 
Area 3308.18 12604.77 1212.27 2550.13 6933.41 12066.45 
EGU 10387.81 147.68 78.99 30651.54 46.21 2095.20 
Mobile 14935.43 8801.20 214.07 329.87 0.00 99360.72 
Non-EGU 12904.17 3100.11 347.01 18215.97 633.57 10320.65 
Non-road 12242.84 9819.18 919.69 1248.35 12.38 87420.60 



 

RPC, Final Report, NNM05AA22A 12 
 

 
(a) 

 
 

(b) 

 
 

(c) 

 

                
 
Figure 4- (a) AURA OMI/O3 observations at the first OMI layer (1013-701mb) orbits over continental 
U.S., August 21, 2006. (b) OMI/O3 observations are resampled to CMAQ-CTM grids. (c) Nearest 
neighbor re-sampling algorithm is then applied to fill-in data that might have been lost due to 
cloud contamination. 



 

RPC, Final Report, NNM05AA22A 13 
 

 

 
 
Figure 5- An example of re-sampling ozonesonde and OMI/O3 profiles onto CMAQ vertical layers 
at Huntsville, AL, August 1, 2006. 

 
5b. Processing of Aerosol Optical Depth (AOT) from MODIS 
 

Particulate Matter (PM) is one of the important factors included in the determination of air quality. Realistic 
representation of emission, transport, and removal of particulate matter is essential in air quality studies. 
Air quality models require datasets for initializing and specifying the lateral boundary conditions in the 
case of limited area models. Ground observations provide routine observations of PM but have limited 
spatial coverage. Multi-channel satellite imagery furnishes the column burden of atmospheric aerosols. 
Satellite-retrieved aerosol optical depth (AOD) and mean particle size are available at spatial resolutions 
that are adequate for use in air quality models. While the total column AOD from the satellite provides the 
spatial distribution of aerosol burden, the vertical distribution of aerosols assists in utilizing such data in 
air quality models. However, only few satellite sensors provide vertical distribution of atmospheric 
aerosols on a limited spatial coverage (e.g., the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observation, CALIPSO). In this project, we examine a technique for utilizing Moderate Resolution 
Imaging Spectroradiometer (MODIS)-retrieved aerosol optical depths in CMAQ, which is a widely used air 
quality model. The technique uses CMAQ-predicted vertical distribution of aerosols as the template for 
distributing satellite-derived AOT into atmospheric columns in CMAQ and assumes that the spatial 
distribution of emission sources are reasonably defined in the model, and the model performs reasonably 
well with respect to vertical mixing. Therefore, the discrepancies between the model AOD and the 
observed AOD are due to either emission source strength or the representation of aerosol 
chemistry/formation in the model. This project quantifies enhancement to air quality predictions derived 
through applying satellite-observed aerosol fields to the CMAQ model. 
 
MODIS is an instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites, both in a sun-
synchronous orbit. Terra's orbit around the Earth is timed, so it passes from north to south across the 
equator in the morning (about 10:30 AM local time), while Aqua passes south to north over the equator in 
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the afternoon (about 1:30 PM local time). MODIS views the entire Earth's surface every 1 to 2 days, 
acquiring data in 36 spectral bands. This project utilizes daily aerosol optical thickness (AOT, hereafter 
used interchangeably with AOD) retrieved from imagery captured by MODIS sensors on both platforms. 
The time period considered is August 2006. Since TERRA-MODIS acquires imagery during the morning 
(10:30 AM) and AQUA-MODIS in the afternoon (1:30 PM), combined aerosol fields retrieved from both 
Terra and Aqua MODIS imagery can create a more complete dataset for use in CMAQ. The rationale for 
combining the data are: 1) MODIS sensor takes approximately four hours to image the entire region 
covered by the Continental United States (CONUS), and it is not possible to obtain simultaneous aerosol 
observations; 2) Aerosol retrievals are not available when cloud cover is present; thus, combining aerosol 
retrievals from the two platforms, increase the probability of obtaining a successful retrieval at a given 
location. The latter is especially true in case of partly cloudy scenes and/or presence of short-lived clouds. 
 
Spatial resolution of MODIS level 2 aerosol product is 10 km by 10 km at nadir, which is resampled to the 
36-km x 36-km resolution equal area grid utilized by the CMAQ model. Note that the MODIS-observed 
AOD, resampled to CMAQ grid, initializes and provides lateral boundary conditions for CMAQ. In addition, 
this data is comparable to the CMAQ-predicted aerosol fields. Since the MODIS AOD is a combination of 
observations from both Terra and Aqua platforms, it is compared against CMAQ-simulated AOD 
averaged over a period (1500-2200 UTC), which is consistent with daytime observation window for Terra 
and Aqua platforms over CONUS region. 
 
Even after combining aerosol fields from Terra and Aqua, one of the difficulties encountered in creating 
AOD fields was missing retrievals due to presence of clouds. In order to obtain a smoothed AOD field, we 
devised a nearest neighbor resampling approach. If a missing value of AOD exists in combined Terra-
Aqua product (before resampling to CMAQ grid), the algorithm must find a three-pixel radius 
neighborhood for a valid AOD observation. For valid observations, the average of neighboring pixels 
replaces the missing value. Sensitivity studies of this process to the radius of the search neighborhood 
show a three-pixel radius is adequate. Table 8 shows the results for a case study in August 14, 2007. 
While going away from a missing pixel reduces the number of missing data, it also increases the 
uncertainty of the value assigned to the missing pixel.   
 
The procedure fills in the majority of the missing data pixels in the region and creates a smoothed AOD 
field. In order to examine the validity of the resampling procedure, we conducted the following 
experiment.  
 
Figure 6 illustrates another example of pixel extension algorithm described above for September 7, 2006. 
From the original Terra-Aqua-combined MODIS AOD image (Figure 6a), 50 % of the non-zero AOD was 
randomly removed (Figure 6b). In successive attempts, we extended the coverage by increasing the 
radius of search from 1-pixel to 3-pixels. 1-pixel extension recovered 57 % of the removed data, while 2- 
and 3-pixel extensions recovered 73 % and 82 % of the removed data, respectively. The correlation 
coefficient between the recovered data and the original data remains relatively unchanged (.88) indicating 
that even going out by 3 pixels for the search does not increase the error in the recovered data 
significantly, while it increases the number of recovered data considerably. We applied the scatterplot 
between the original AOD values of the randomly removed pixels and the values obtained for the same 
locations after the resampling procedure to the modified field to show that the majority of the points 
cluster along the one-to-one line. We performed the same experiment on the August 14, 2007 case, and 
it resulted in a correlation coefficient of .93 suggesting a good agreement between the original AOD field 
and the recovered data. 
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Figure 6- Pixel Extension Algorithm (PEA) allows for increasing MODIS coverage by 
reconstructing missing values due to cloud contamination. (a)  MODIS AOD from TERRA and 
AQUA on September 7, 2006. (b)  We randomly removed 50 % pixels from original image (a).  (c, d, 
e) Reconstructed image using 1, 2, and 3 pixel extension. 
 
Table 8 - The percentage of missing pixels within MM5 area. 
 
 08/01 08/02 08/03 
2 pixels 31.5 % 34 % 34 % 
3 pixels 18 % 20.7 % 21.8 % 
4 pixels 10 % 13 % 14 % 
 
We needed information obtained from CMAQ regarding vertical distribution of aerosols for effective use of 
MODIS AOD in the model. The dependency of the technique to the information from the model implies 
that the aerosol module used has a decisive impact on the aerosol speciation and distribution. In this 
exercise, we used the standard aerosol module in CMAQ as described in [Binkowski and Roselle, 2003] 
with updates described in [Bhave, et al., 2004].  The aerosol distribution is modeled as a superposition of 
three lognormal modes that nominally correspond to Aitken (particles with diameter < .1 m), 
accumulation (particles with 0.1 < diameter < 2.5 m), and coarse (particles with diameter > 2.5 m) 
modes. In the current exercise, we use two aerosol categories, fine, and coarse modes. Fine mode 
consists of aerosols with aerodynamic diameter of less than 2.5 micrometers (PM2.5), while coarse mode 
consists of aerosols with diameter greater than 2.5 micrometers. The sum of the species concentrations 
over the Aitken and accumulation modes determines the model results for PM2.5 concentrations. Table 9 
shows CMAQ aerosol species (as represented in CMAQ aerosol module). The fine mode aerosol species 
comprise sulfate, nitrate, ammonium, anthropogenic and biogenic organic carbon, elemental carbon, and 
other unspecified species originating from human activity.  
 
MODIS level 2 data provides fine mode fraction, which is the fractional contribution of fine mode to total 
AOD. We used fine mode fraction data in this project to separate out fine and coarse mode AOD. 
However, fractional contributions made by the different aerosol species to fine and coarse mode aerosols 
and knowledge of vertical distribution is necessary to utilize MODIS AOD. The following statements 
provide closure: 1) The CMAQ-simulated profile for the corresponding time gives the vertical distribution 
of different aerosol species; 2) The percentage contribution of an aerosol species to the total particulate 
mass within a column is the same as that obtained from CMAQ simulations for the corresponding time. 
Based on these assumptions, the following ratio parameter (α) scales the aerosol mass concentration in a 
CMAQ vertical column: 
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CMAQ

MODIS


   

 

Where MODIS  and CMAQ  are MODIS and CMAQ aerosol optical depths (AOD), respectively. For the 

model, CMAQ  becomes: 


topZ

extCMAQ dzB
0

  

Where extB  is the aerosol extinction coefficient (km-1), and Z is the height in km. To arrive at aerosol 

extinction coefficient, we used an empirical relationship devised from long-term measurements at the 
Interagency Monitoring of Protected Visual Environments (IMPROVE) sites [Hand and Malm, 2005], 
including the new revisions made based on the current information 
(http://vista.cira.colostate.edu/improve/Publications/GrayLit/019_RevisedIMPROVEeq/RevisedIMPROVE
Algorithm3.doc).  The extinction coefficient (Mm-1) is calculated as: 
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The algorithm uses three water-growth adjustment terms. The small size distribution (S) and the large 
size distribution (L) of sulfate and nitrate compounds and for sea salt (fS(RH), fL(RH) and fSS(RH), 
respectively) use the adjustment terms. The elevation and annual average temperature of each of the 
IMPROVE monitoring sites includes site-specific Rayleigh scattering calculations. 
 
Hourly-modeled AOD averages to corresponding MODIS tracking time, which is from 15 to 22 GMT to 
obtain the ratio α. In order to eliminate the site-specific impact of Rayleigh scattering 

(  dzscatteringRayleigh )_( ), the adjustment is applied only if the MODIS AOD ( MODIS ) is greater 

than Rayleigh scattering. Thus, when the impact of Rayleigh scattering is greater than zero, the ratio 
becomes: 
 










dzscatteringRayleigh

dzscatteringRayleigh

ext

MODIS

)_(

)_(




  

 
 If Rayleigh-scattering impact does not exist and MODIS data are available, then the ratio becomes: 




dzext

MODIS




  

 
Note that assumption is the difference between satellite data, and model data of AOT is only for mass- 
scaling discrepancy. Another assumption is a revised new IMPROVE equation, which is explained to AOT 
from CMAQ model. The algorithm applies the ratio calculated above to each aerosol mass concentration 
in each layer. All 16 fine aerosol species in Table 9 (I and J modes, except water) are scaled by α. Also, 
note that while NO2 is used in IMPROVE equation for calculating the aerosol extinction coefficient, it will 
not be scaled by α. Figure 7 shows examples of scaled vertical profiles obtained using this procedure. 
When the value of α is less than 1, it reduces the mass concentration throughout the vertical column, 
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while values of α greater than 1 lead to an increase throughout the column. In cases where satellite-
derived AOD is not available, the algorithm uses model calculations in place of the scaling procedures. 
For initial condition, we use satellite data of previous day (backward method), and for boundary condition, 
we use satellite data of next day (forward method).  
 
Table 9- Speciation and variable name used in the CMAQ aerosol module. 
 

Species description  Name  
Aitken mode sulfate mass  ASO4I  
Accumulation mode sulfate mass  ASO4J  
Aitken mode ammonium mass  ANH4I  
Accumulation mode ammonium mass  ANH4J  
Aitken mode nitrate mass  ANO3I  
Accumulation mode nitrate mass  ANO3J  
Aitken mode anthropogenic secondary organic mass  AORGAI  
Accumulation mode anthropogenic secondary organic mass AORGAJ  
Aitken mode primary organic mass  AORGPAI  
Accumulation mode primary organic mass  AORGPAJ  
Aitken mode secondary biogenic organic mass  AORGBI  
Accumulation mode secondary biogenic organic mass  AORGBJ  
Aitken mode elemental carbon mass  ACEI  
Accumulation mode elemental carbon mass  ACEJ  
Aitken mode unspecified anthropogenic mass  A25I  
Accumulation mode unspecified anthropogenic mass  A25J  
Aitken mode water mass  AH2OI  
Accumulation mode water mass  AH2OJ  

 

 
 
Figure 7- Vertical profiles of CMAQ mass concentrations scaled using the � parameter. a) Black 
carbon and, b) anthropogenic organic mass. Blue and red lines are the original CMAQ and scaled 
concentrations, respectively. Note that � parameter is less than 1.0 for the case shown in panel 
(a) and more than one for that shown panel (b). 

a b
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 5c. Processing of global model data for CMAQ-CTM 
 
Another approach for providing IC and BC for CMAQ simulations would be using a global model that 
extends far beyond the regional modeling domain and could potentially illustrate the impact of long-range 
transport and recirculation outside the regional boundary. To establish a secondary reference point for 
evaluating the impact of direct use of satellite observations in this project, we constructed a continuous 
BC record from RAQMS global model predictions. Our collaborator in this project, Dr. Daewon Byun 
(formerly at University of Houston and currently with NOAA/ARL), provided the BCs for these simulations.   
 
Data assimilation of OMI ozone column with NOAA GFS Global meteorology and the satellite fire 
detection data from MODIS Rapid Response produced the RAQMS data at 2-degree-by-2-degree 
resolution. The details on model configuration and emissions data used for the RAQMS simulations are 
summarized in [Al-Saadi, et al., 2008]. It used emissions of CO, NOx, and hydrocarbons estimated from 
the gridded carbon fuel consumption databases, satellite fire detections, and meteorology-based 
estimates of fire weather severity to estimate the amount of carbon released from active fires and 
ecosystem-dependent emission ratios. 
 
Since we used previous spin-up simulations as the CMAQ IC inputs, we did not prepare any special IC 
files for CMAQ simulations from RAQMS outputs. The University of Houston, Institute for 
Multidimensional Air Quality Studies (IMAQS), developed the RAQMS2CMAQ conversion code, which 
constructed the BC files. The code initially processed RAQMS data for the 1999 simulations, and it 
originally required daily METCRO3D files for providing the pressure height information used in the vertical 
interpolation. For this project, we utilized a reference pressure-height coordinate instead. Additionally, 
since the recent version of MCIP did not provide all the necessary inputs for the conversion code, we 
modified the code to accommodate the limited information. A one-day BC file from control simulation set 
up the same species list in the BC file and verified the results of the new code with those from the original 
code for that one day. The interpolation with the fixed pressure levels may potentially be less precise than 
the MM5-provided dynamic pressure levels. On the other hand, interpolating with the fixed pressure 
levels may be more robust than utilizing the MM5 pressure levels, which are affected by the synoptic and 
local scale pressure perturbations.  
 
We produced and verified a BC file after completion of the code modification. We compared the results 
with the University of Houston’s (UH) 23-layer MM5 simulation case. Surprisingly, the ozone 
concentrations at the top level (39th layer) for the current case was substantially lower than those from the 
UH's top level (23rd layer) ozone. This difference could be due to the vertical resolution of the current 
model configuration in which the top layer is too thick to represent the stratospheric-tropospheric 
exchange processes. In the current model configuration, the top layer is very thick in order to have high 
vertical resolution around 10 km altitude. We used this configuration to minimize the artificial numerical 
mixing of high stratospheric ozone into the upper troposphere (through numerical diffusion). 
 
The final sets of simulations investigate the efficacy of using satellite observations of ozone and aerosols 
to provide IC and BC for regional air quality simulations. It comprises two sets of simulations. The first 
sets of simulations, called SAT_BC, are similar to control except for the BC data they use. In SAT_BC 
simulations, we merged OMI ozone profiles and MODIS AOD with model predictions to construct daily BC 
files. The simulations perform in 24-hour segments, starting at 0:00 GMT, but the output from the previous 
segment, continuously initializes each new segment. In SAT_ICBC simulations, merging the satellite data 
with model predictions provide both BC and IC for each segment. 
 
Satellite observations for the current day, used in conjunction with the current day simulation, prepare BC 
for these simulations. This combination is necessary due to the time offset between the observations and 
the model predictions. Combining the data from all the satellite tracks within a day, which span over 
several hours, while representing the same local time (about 1:30 PM) for any location, results in 
complete spatial coverage over the continental U.S. (CONUS). Furthermore, we are assuming that this 
single measurement can explain ozone and aerosol burden at lateral boundaries for a 24-hour simulation. 
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Since each segment starts at 0:00 GMT, the current day observations would be a better representation of 
the air outside the boundary. However, this technique is only applicable to retrospective modeling, such 
as regulatory air quality applications, where the current day observations are available. 
 
BC only impacts the interior of the domain if the flow field is transporting air from outside the domain to 
the interior. Thus, the technique used in these simulations is not adequate for the situations where a 
strong flow field toward the domain and an observed transient event at the boundary exist. Future 
refinements to our technique will address this shortcoming as we plan to introduce diurnal variation for BC 
by projecting the observations away from the boundary to arrive at the boundary conditions for each given 
time. 
 
In preparing IC files, the algorithm selects satellite observations from the previous day, because they are 
closer to the model initialization time of 0:00 GMT. Extracting concentrations from IC files at model grids 
that reside at the boundary simply constructs BC. 
 
Figures 8 to 13 show the BC plots for O3, PAN, HCHO, NOx, CO and sulfate aerosol for south, east, 
north, and western boundaries for August 1, 2006. Each panel shows BC for control, RAQMS_BC, 
SAT_BC, and SAT_ICBC. The boundary conditions for SAT_BC and SAT_ICBC are identical due to the 
application of the same technique. The presented results emphasize the similarity. Figure 8 shows that 
both RAQMS_BC and SAT_BC ozone concentrations are significantly different from the control. In 
addition, both the satellite observation and RAQMS agree while OMI profiles indicate more stratospheric 
O3 incursion into the mid-troposphere. Also of interest is the disagreement between the model and the 
satellite measurements in the western boundary where RAQMS indicates elevated O3 concentrations in 
mid-troposphere that are not seen in the satellite observations. The figures also point to another limitation 
for the satellite data within the daytime boundary layer (below 1-km). The sharp vertical gradient around 
1-km is because when OMI data is not available, we revert to the model value. Thus, the sharp gradient is 
demonstrating the contrast between higher OMI concentrations above 1 km and lower model values 
below this elevation. 
 
Figure 9 shows similar plots for peroxyacetyl nitrate (PAN). Our technique extracts the BC from a 
modified IC file. CMAQ output at the end of the run for the previous 24-hour segment creates the IC file. 
Therefore, the emissions and the dynamics of the previous day consequently affect the IC and BC. This 
method explains the difference between BC for control and SAT_BC simulations. Interestingly, vertical 
distribution of PAN for SAT_BC shows remarkable agreement with RAQMS_BC. To a lesser degree, this 
resemblance in pattern is also manifested in formaldehyde distribution in Figure 10, meaning that the 
chemical evolution within the domain of study is mainly responsible for the overall characteristics of the air 
mass in the boundary as the regional model produces a similar distribution in PAN and formaldehyde as 
the global model predicts. Figure 11 illustrates such general agreement for NOx on the eastern boundary 
while carbon monoxide does not exhibit a good agreement (Figure 12). 
 
Figure 13 shows BC for sulfate aerosol (ASO4). RAQMS did not extract this information and as evident 
from the figure, BC for RAQMS_BC is identical to the control simulation. However, since SAT_BC 
simulation extracts this information from the interior of the domain, the southern and eastern boundary 
experience the impact of ASO4 loading. 
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Figure 8– Ozone (ppb) BC for south, east, north, and west boundaries. In each panel, BC for 
control (top left, standard CMAQ BC), RAQMS_BC (top right, BC from RAQMS global model), 
SAT_BC (lower left, BC from satellite observations) and SAT_ICBC (lower right) simulations for 
August 1, 2006 are presented. Note that BC for SAT_BC and SAT_ICBC are identical. They are 
both included for completeness. 
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Figure 9– PAN (ppt) BC for south, east, north, and west boundaries. In each panel, BC for control 
(top left, standard CMAQ BC), RAQMS_BC (top right, BC from RAQMS global model), SAT_BC 
(lower left, BC from model) and SAT_ICBC (lower right) simulations for August 1, 2006 are 
presented. Note that BC for SAT_BC and SAT_ICBC are identical. They are both included for 
completeness. 
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Figure 10- Formaldehyde (ppb) BC for south, east, north, and west boundaries. In each panel, BC 
for control (top left, standard CMAQ BC), RAQMS_BC (top right, BC from RAQMS global model), 
SAT_BC (lower left, BC from model) and SAT_ICBC (lower right) simulations for August 1, 2006 
are presented. Note that BC for SAT_BC and SAT_ICBC are identical. They are both included for 
completeness. 
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Figure 11– NOx (ppt) BC for south, east, north, and west boundaries. In each panel, BC for control 
(top left, standard CMAQ BC), RAQMS_BC (top right, BC from RAQMS global model), SAT_BC 
(lower left, BC from model) and SAT_ICBC (lower right) simulations for August 1, 2006 are 
presented. Note that BC for SAT_BC and SAT_ICBC are identical. They are both included for 
completeness. 
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Figure 12– Carbon monoxide (ppb) BC for south, east, north and west boundaries. In each panel, 
BC for control (top left, standard CMAQ BC), RAQMS_BC (top right, BC from RAQMS global 
model), SAT_BC (lower left, BC from model) and SAT_ICBC (lower right) simulations for August 1, 
2006 are presented. Note that BC for SAT_BC and SAT_ICBC are identical. They are both included 
for completeness. 
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Figure 13– Sulfate aerosol (g/m3) BC for south, east, north and west boundaries. In each 
panel, BC for control (top left, standard CMAQ BC), RAQMS_BC (top right, BC from 
RAQMS global model), SAT_BC (lower left, BC from model) and SAT_ICBC (lower right) 
simulations for August 1, 2006 are presented. Note that BC for control and RAQMS_BC 
and for SAT_BC and SAT_ICBC are identical. They are included for completeness. CMAQ 
does not have the aerosol species from RAQMS mapped; therefore, the standard CMAQ 
concentrations are used.  
 
 
F. Model performance evaluation 
 

1. Methodology 
 

We evaluated the performance of the model in the boundary layer using O3 and PM2.5 
observations recorded at EPA’s Air Quality System (AQS) sites. For performance above the 
boundary layer, we use ozonesonde observations recorded during the IONS06 field campaign.  
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The statistical measures include the Mean Bias (MB), Mean Error (ME), Mean Normalized Bias 
(MNB), Mean Normalized Error (MNE), Mean Fractional Bias (MFB), Mean Fractional Error 
(MFE) in hourly averaged concentrations predicted at these stations. Table 10 provides the 
mathematical formulation of these metrics. Since the normalized quantities can become large 
when observations are small, using a cut-off value is necessary while computing MNB and MNE 
statistics. The calculation excludes the prediction-observation pair whenever the observation is 
smaller than the cut-off value.  
 
Table 10- Mathematical formulation of statistical metrics for model performance evaluation 
at surface. 
 
Metrics Formulation Notes 
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2. CMAQ evaluation over total atmosphere column 

 
The purpose of CMAQ evaluation is to know (1) how assimilation model performance correlates 
to satellite aerosol product, AOT, (2) how much bias in the assimilation data from MODIS data in 
an assumption that data from satellite are correct, and (3) variance of assimilation data over 
CONUS. Correlation is increasing and mean normalized bias (MNB) and variance is reducing. 
Figure 14 shows the model performance compared to MODIS satellite data.  
 
Many pixels of baseline model (CNTRL) are under-predicted compared to satellite data, 
especially when MODIS AOT is less than 0.6 and the results show baseline model performance 
does not capture aerosol properly (Figure 15-(a)). Assimilation model data catch satellite data 
well and scattering is following to 1:1 line. If AOT is less than 0.6, low model values of AOT at 
baseline become high values at assimilation model. (Figure 15-(b)).  
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Figure 14- Statistics of CNTRL model and SATICBC. 
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Figure 15- Scatter plot for MODIS AOT versus modeled AOT (first row (13-(a)) is for 
baseline model and second row (13-(b)) is for assimilation model.) 
 

3. Surface evaluation  
 

Spatial evaluations of west area, central area, and east area show improvement of model 
performance in comparison to mass concentration of surface observations. Some states, which 
represent those three areas, show better correlation and less MNB and variance (Figure 16). The 
states for evaluation can be represented as west (California (CA) and Idaho (ID)), mid-east ((or 
centre – Texas (TX)) and south-east ((Mississippi (MS), North Carolina (NC), Alabama (AL), 
Georgia (GA), Tennessee (TN)). 
 
Baseline model performance is not poor in east areas but is poor in central and west areas. The 
model under predicts PM25 at most regions in the west U.S., but the assimilation model 
performance of aerosol is improved even in west areas.  
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Figure 16- Comparison of observed PM25 at ground level and model-predicted PM25 at 
surface of daily PM25 values during August 2006.  
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Monthly mean statistics comparing model-simulated surface PM2.5 to the surface observations 
also show improvement. Figure 17, Figure 18, and Figure 19 show the statistics for different sub-
regions indicated in Figure 2. As indicated in the charts, the model under-predicts PM2.5 in all 
regions. MODIS aerosol products improve the outcome; however, the improvement is not uniform 
in all regions. Using MODIS observations in specifying both the lateral boundary conditions and 
the initial condition (for each 24 hr run segment) has the greatest impact across all regions. 
 
The overall evaluation of the results indicates that the model performance with respect to the 
prediction of PM2.5 total mass is greatly improved. Since the scaling assumes that the model 
partitioning and distribution of PM2.5 species is reasonable and the error is due to the magnitude 
of emissions/transformation, in cases where the partitioning was inaccurate, the model 
exacerbated the inaccuracies. Our future research in this area will try to utilize the data from 
surface monitors to complement satellite observations and attempt to correct the PM2.5 
partitioning as well as scaling. 
 
The top panel in Figure 17 shows the mean observed mass concentration of PM2.5 for different 
regions versus model predictions from CNTRL, RAQMS, SATBC, and SATICBC simulations. 
SATICBC simulation shows a marked improvement over CNTRL in predicting PM2.5 in all 
regions and particularly in the Mid-Atlantic/Northeast region where the bias is practically 
negligible. Figure 17 shows the overall mean bias and error. The statistics demonstrate that while 
the use of satellite observations for BC marginally improves model performance, readjusting 
PM2.5 every 24 hours can significantly enhance model predictions of PM2.5. This is an expected 
result because correcting BC greatly affects the regions closer to the lateral boundaries of the 
domain, but initializing the model simulation with a satellite-derived field corrects the total mass in 
the entire domain. Figure 18 and Figure 19 present the improvements made by removing the 
smaller concentrations where monthly mean normalized and fractional bias and error exist. For 
example, the overall MFB shows a 30 % reduction. 
  
Figure 20 and Figure 21 show the daily averaged difference in PM2.5 mass concentration 
between RAQMS, SATBC and SATICBC simulations and the CNTRL simulation for August 20 
and 24, 2006. A more detailed analysis of the results shows that episodically the satellite derived 
BC also significantly impact PM2.5 over a large region and is able to explain the impact of large-
scale transport. Figure 22 shows one such event where there is a large influx of PM2.5 from the 
southeastern boundary impacting the Gulf of Mexico, Louisiana, Texas, Oklahoma, Arkansas, 
and extending into Kansas and Missouri. Events showing the impact of PM2.5 transport are 
common. However, since in such events the transport is the dominant factor, the accuracy of 
model predictions of PM2.5 is dependent on the ability of the meteorological model in explaining 
the flow field. 
 
SATICBC simulation shows the largest deviation from the CNTRL simulation in the eastern part 
of the domain particularly on August 24, 2006. RAQMS simulation also shows the increase in the 
eastern part of the domain for this day, but the magnitude of the increase is not adequate to 
explain the model under-prediction. 
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Figure 17 – Charts showing the monthly mean, mean bias and mean error for model 
simulated PM2.5 for different regions (as indicated in Figure 2). Midwest and Mid-
Atlantic/Northeast regions show the greatest improvement in performance. 
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Figure 18 – Monthly mean normalized bias and error for model simulated PM2.5 for the 
month of August 2006 for different sub-regions (as indicated in Figure 2). 
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Figure 19 – Monthly mean fractional bias and error for model simulated PM2.5 for August 2006 for 
different sub-regions (as indicated in Figure 2). 
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1. Result of aerosol simulation 

 
 

 
 
 
Figure 20- Daily average difference in surface layer PM2.5 concentration (RAQMS minus CNTRL) 
for August 20 (top) and August 24, 2006 (bottom). 
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Figure 21 - Daily average difference in surface layer PM2.5 concentration (RAQMS minus CNTRL) 
for August 24, 2006 (bottom). 
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Figure 22 - Daily average difference in surface layer PM2.5 concentration (SATBC minus CNTRL) 
for August 20 (top) and August 24, 2006 (bottom). 
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2. Result of ozone simulation 
 
EPA monitoring stations evaluated the performance of the model. The statistical measures include the 
Mean Bias (MB), Mean Error (ME), Mean Normalized Bias (MNB), Mean Normalized Error (MNE), Mean 
Fractional Bias (MFB), and Mean Fractional Error (MFE) in hourly averaged concentrations predicted at 
these stations. Table 10 provides the mathematical formulation of the metrics. Since the normalized 
quantities can become large when observations are small, a cut-off value of 60, 10, and 120 ppb for O3, 
SO2, and CO, respectively, assist in computing MNB and MNE statistics. Thus, whenever the observation 
is smaller than the cut-off value, the calculation excludes the prediction-observation pair. The study 
presents the hourly-normalized bias and error metrics as daily averages over all monitoring stations. 
Thus, whenever the observation is smaller than the cut-off value, the calculation excludes the prediction-
observation pair.  
 
The CNTRL simulation will serve as the comparison reference point to other simulations. Table 11 
presents the statistics from CNTRL run for the five sub-regions shown in Figure 2. Bias for all sub-regions 
is about 6 ppb with the normalized bias being -7 % for the Midwest region. The systematic over-prediction 
of ozone at night in CMAQ causes the positive bias. CMAQ over-predicts ozone at night and under-
predicts it during the daytime peaks. Since MNB does not include the lower values at night, it shows an 
under-prediction of 7-12 % for different sub-regions. The under-prediction is the lowest in the Midwest 
region at 7 %, followed by 9 % in the Mid-Atlantic/Northeast region, 10 % in the Central region, 11 % in 
the Southeast region, and 12 % in the Western region.   
 
Table 11 - Performance statistics for CNTRL simulation (August 1-31, 2006 at 36-km grid resolution) 
 

CENRAP MANEVU MWRPO VISTAS WRAP
Ozone Mean OBS ppm 0.033 0.033 0.029 0.034 0.034
Ozone Mean PRD ppm 0.039 0.039 0.037 0.039 0.039
Ozone Bias ppm 0.006 0.006 0.007 0.006 0.006
Ozone Gross Error ppm 0.012 0.012 0.013 0.012 0.012
Ozone Normalized Bias percent -10.237 -9.391 -6.670 -11.063 -11.736
Ozone Normalized Error percent 18.813 17.566 19.235 18.508 18.983
Ozone Fractional Bias percent 23.995 23.812 27.019 22.513 22.680
Ozone Fractional Error percent 41.828 44.028 49.349 43.363 43.196
Carbon monoxide Mean OBS ppm 0.427 0.402 0.483 0.371 0.448
Carbon monoxide Mean PRD ppm 0.245 0.237 0.205 0.266 0.246
Carbon monoxide Bias ppm -0.182 -0.165 -0.277 -0.105 -0.202
Carbon monoxide Gross Error ppm 0.241 0.234 0.345 0.212 0.270
Carbon monoxide Normalized Bias percent -33.972 -33.976 -42.872 -23.469 -33.961
Carbon monoxide Normalized Error percent 50.324 50.808 67.090 50.824 52.118
Carbon monoxide Fractional Bias percent -44.007 -38.339 -70.929 -29.888 -45.017
Carbon monoxide Fractional Error percent 66.461 68.789 87.253 61.826 69.104
Sulfur dioxide Mean OBS ppm 0.004 0.004 0.003 0.003 0.004
Sulfur dioxide Mean PRD ppm 0.004 0.005 0.004 0.004 0.004
Sulfur dioxide Bias ppm 0.000 0.001 0.001 0.000 0.000
Sulfur dioxide Gross Error ppm 0.004 0.004 0.003 0.003 0.004
Sulfur dioxide Normalized Bias percent -57.305 -55.845 -60.830 -54.028 -60.745
Sulfur dioxide Normalized Error percent 68.321 63.033 67.123 61.995 67.389
Sulfur dioxide Fractional Bias percent 17.045 17.426 34.238 1.216 5.386
Sulfur dioxide Fractional Error percent 85.776 84.547 79.457 81.569 80.420  
 
 



 

RPC, Final Report, NNM05AA22A 39 
 

Comparing the other simulations to the control offers mixed result. Some metrics show improvements, 
while the others indicate deterioration. However, the overall picture is consistent and indicates an overall 
increase in ozone concentration in RAQMS, SATBC and SATICBC simulations. That is, the nighttime 
over-prediction is exacerbated, but the daytime under-prediction is improved. Figure 23 shows the mean 
observed concentration for each sub-region (and the overall) along with model predictions for August 
2006. RAQMS over-predicts ozone in all regions while SATBC and SATICBC exhibit a better agreement 
with the average observations for MANEVU and CENRAP regions. The average concentrations represent 
daytime, as well as nighttime observation/prediction pairs. As mentioned before, much of the over-
prediction is due to the nighttime over-prediction. Figure 24 illustrates the Mean Normalized Bias (MNB) 
for different simulations. Because data pairs where observed ozone is less than 60 ppb are not included 
in the MNB calculation, this metric is an indicator of model performance with respect to daytime ozone 
prediction (or peak ozone prediction). Therefore, by eliminating the low nighttime values, Figure 24 shows 
that the model is under-predicting peak ozone. RAQMS simulation, which has the highest Mean Bias 
(MB), as illustrated in Figure 25 has the best overall performance during the day as evident from MNB 
(with the best performance in the Midwest region). SATBC and SATICBC simulations overall perform 
better than the control simulation but cannot outperform RAQMS. Judging from these statistics it seems 
that the satellite-derived boundary condition for the western boundary is much higher than what the 
surface observations indicate. Then, the predominant west-east flow is transporting the higher ozone to 
the east and its impact diminishes as the flow reaches the eastern part of the domain. In fact, both 
SATBC and SATICBC simulations perform poor in the west (WRAP) and outperform RAQMS in the 
southeast region (VISTAS) with respect to daytime ozone predictions. The BC in the southeastern part of 
the domain predominantly affects this region, and the daytime satellite profile explains the impact of 
transboundary flow to this region. 
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Figure 23 – Monthly mean ozone concentration from surface observations and model simulated 
values for each sub-region during the month of August 2006. 
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Figure 24 - Monthly mean normalized bias from each simulation for each sub-region during the 
month of August 2006. 
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Figure 25 – Monthly mean bias for simulated ozone concentrations as compared to EPA surface 
observations for each sub-region. 
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Figure 26 is a snapshot of the difference in ozone concentration in the boundary layer (1 km altitude) 
between SATBC and the CNTRL simulations for August 16, 2006. The plot clearly shows the role of 
transport in advecting ozone from the lateral boundaries into the interior of the domain. It also shows 
higher ozone concentrations entering the interior of the domain from the northwestern boundary while the 
easterlies more affect the Southeast. This could partly explain the statistics discussed previously. A closer 
look at the role of transport and the impact of the boundary conditions reveals that the southeast region 
and the GoM area is more impacted by these easterlies that at times carry the remnants of the northeast 
pollution through re-circulation. 
 
 

 
 
Figure 26 – Difference in ozone concentrations between SAT_BC and CNTRL simulations in the 
boundary layer for August 16, 2006. The plot clearly shows the role of transport in advecting 
ozone from the lateral boundaries 
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a. Evaluation of ozone simulation against ozonesonde measurements 
 
We used 341 ozonesonde profiles for August 2006 from 18 stations that participated in the 
IONS06 campaign. One of these 18 stations is the NOAA research vessel Ron Brown located in 
The Gulf of Mexico for IONS06 and referred to as “Ron Brown station”. 
 
For each day during August 2006, the study compares ozonesonde measurements 
between1500~2300 UTC with ozone mixing ratios at 1900 UTC simulated by four CMAQ runs. 
The base run significantly underestimates ozone concentrations in the upper troposphere, while 
ozone values simulated from RAQMS_bc, sat_bc, and sat_icbc look much closer to those 
measured by ozonesondes (Figure 27). The bottom left panel of Figure 27 illustrates the further 
improvement that results in the interior region by applying satellite data as IC (sat_icbc run). For 
example, at Huntsville, AL, ozone variations simulated from sat_icbc run show the best 
agreement with ozonesonde measurements (Figure 28).  
 
Corresponding vertical distribution of ozone mixing ratios from four CMAQ simulations (cntrl, 
RAQMS_bc, sat_bc, sat_icbc) are compared with these ozonesonde profiles by calculating the 
relative differences ((model-sonde) x 100/sonde %) of each model-sonde pair, the mean of these 
relative differences (Mean Normalized Bias), and estimated error in calculating the mean values 
(Figure 29). The sat_bc performs the best between surface and 900 mb. The sat_icbc performs 
the best within 870 mb ~ 815 mb and 340mb ~ 240 mb. Between 800 mb ~ 375 mb, RAQMS_bc 
is the best. OMI ozone profiles are also evaluated with this ozonesonde data and show good 
agreement (-10% < Mean Normalized Bias < 10%) except in the boundary layer region (surface 
to ~1.5km above ground) where the sample sizes (number of coincidence pairs between OMI and 
Ozonesonde profiles) are too small for a significant comparison (Table 12).  
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Figure 27- O3 (ppbv) at 1900 UTC, August 21, 2006 simulated by 4 CMAQ runs; over plotted 
with 6 ozonesondes launched between 1500~2300 UTC. Left panels represent CMAQ level 
33 (212 hPa). Right panels represent level 24 (501 hPa). 
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Figure 28- CMAQ-simulated ozone variations at Huntsville, AL, during August 2006. 
Ozonesonde measurements are re-sampled onto CMAQ vertical resolution and then 
overplotted onto model simulations.  
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(a) 
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(b) 

 

 
 
Figure 29- Differences calculated between model simulations (base, RAQMS_bc, sat_bc, 
sat_icbc) and ozonesondes, as well as between level-2 OMI/O3 profiles and ozonesondes, 
during August 2006. (a) Mean bias. (b) Mean normalized bias.  
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Table 12- sample sizes (number of coincidence pairs between ozonesonde and model 
simulated ozone profiles/OMI ozone profiles) within each CMAQ layer 
 

Layer # height (km; AGL) cntrl raqms_bc sat_bc sat_icbc OMI 

39 15.475 251 251 251 251 243 

38 13.698 252 252 252 252 244 

37 12.784 252 252 252 252 244 

36 12.130 252 252 252 252 244 

35 11.530 252 252 252 252 244 

34 10.975 252 252 252 252 244 

33 10.458 252 252 252 252 244 

32 9.974 252 252 252 252 244 

31 9.519 252 252 252 252 244 

30 9.088 252 252 252 252 244 

29 8.679 252 252 252 252 244 

28 8.103 252 252 252 252 244 

27 7.308 252 252 252 252 244 

26 6.506 252 252 252 252 244 

25 5.772 252 252 252 252 244 

24 5.096 251 251 251 251 243 

23 4.469 252 252 252 252 244 

22 3.883 252 252 252 252 244 

21 3.332 252 252 252 252 244 

20 2.813 251 251 251 251 243 

19 2.370 250 250 250 250 242 

18 2.039 251 251 251 251 243 

17 1.765 250 250 250 250 242 

16 1.498 249 249 249 249 226 

15 1.239 226 226 226 226 87 

14 1.028 224 224 224 224 47 

13 0.862 226 226 226 226 31 

12 0.700 225 225 225 225 22 

11 0.540 224 224 224 224 10 

10 0.421 226 226 226 226 8 

9 0.343 225 225 225 225 7 

8 0.266 226 226 226 226 3 

7 0.189 224 224 224 224 3 

6 0.132 204 204 204 204 3 

5 0.094 183 183 183 183 1 

4 0.056 176 176 176 176 0 

3 0.026 159 159 159 159 0 

2 0.011 143 143 143 143 0 

1 0.004 127 127 127 127 0 
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4. Discussion 

 
[R. B. Pierce, et al., 2007] examined the effect of such an approach on CMAQ predictions and 
concluded that while CMAQ predictions in the free troposphere improved, it did not significantly 
affect surface ozone predictions. More recently, [Song, et al., 2008] investigated the impact of 
boundary conditions developed using global model output such an approach on CMAQ-CTM 
predictions. Compared to the predefined time-independent boundary condition, the dynamic 
lateral boundary condition resulted in higher ozone concentrations (up to 200 ppb) in upper levels 
at high altitudes, and at surface monitors in the Midwest. In the current study, using RAQMS for 
providing lateral boundary condition served as another reference point in quantifying the impact of 
using satellite information directly in the regional modeling system versus realizing their impact 
through their assimilation in a global model. 
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G. Conclusions and recommendation for future research and applications 
 
Thus far, we have demonstrated the utility of OMI O3 profiles and MODIS aerosol products in 
CMAQ (the Decision Support Tool). OMI O3 significantly improved model performance in the free 
troposphere and MODIS aerosol products substantially improved PM2.5 predictions.   
 
There are still issues concerning the fact that neither OMI nor TES provide adequate information 
in the boundary layer with respect to O3. Our benchmarking efforts have shown marginal 
improvements in the model performance within the boundary layer. However, with boundary layer 
O3 being of particular importance to the air quality community, the future work should devise 
approaches to better characterize pollution episodes. One approach could include the use of 
other AURA products such as NO2, HCHO, and CO. Because the formaldehyde abundance is 
mainly limited to the boundary layer, column measurements of HCHO can make significant 
contribution to the better representation of the boundary layer chemical composition. 
 
With respect to the use of aerosol products, while satellite data improved model performance of 
PM2.5 total mass concentration, aerosol speciation remains a challenge. The incorporation of 
satellite data relied on a key assumption that the aerosol partitioning within the model is reliable. 
Therefore, revisiting this assumption or improving the aerosol model within the DST takes higher 
priority. 
 
The current project examined only the impact of the boundary conditions on the air-quality 
predictions. This limitation implies that the use of the satellite data was helpful in the realization of 
transboundary transport of pollution and helped in better representation of the free-tropospheric 
ozone. However, the daily information from the satellite helps improve the initial condition in the 
model. This effort seems to be the natural extension of the current project and effectively 
assimilates the satellite data into the model fields. Because the initial conditions greatly affect the 
short-term predictions, use of satellite data for IC can also potentially improve air-quality 
forecasts. 
 
Finally, the current project did not examine the role of assimilation in improving the physical 
atmosphere. A future development of DST should include an improved physical atmosphere in 
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conjunction with the assimilation of satellite trace gases. Assimilation of satellite-observed clouds 
greatly improves model predictions of ozone within the boundary layer. It also eliminates one 
component of inconsistency between the model and the observations. 
 
One of the problems in satellite data assimilation is that the observed physical/chemical world is 
not always consistent with the model world. Clouds are a major manifestation of this 
inconsistency. A discrepancy between model clouds (clear sky) and the satellite clouds (clear 
sky) impacts the radiation fields, vertical transports and local circulations, the chemistry and 
microphysical properties. This discrepancy implies that when one component of the physical or 
chemical atmosphere is perturbed (adjusted) by the assimilation of satellite data, the complete 
environment for supporting and sustaining the adjustment does not exist. Therefore, as we 
continue to introduce more chemical observations into the modeling framework, it is also 
essential to model the physical environment more realistically. These improvements include 
assimilation of satellite observed skin temperature, moisture, albedo, insolation, and clouds in 
conjunction with the assimilation of trace gases and aerosols. 
 
Another area of interest for DST future development is the inclusion of lightning- generated NOx 
(LNOx) in the emissions inventory. Such an effort can take advantage of AURA’s column NO2 
measurements to reduce the uncertainty in LNOx production rate and the Lightning Imaging 
Sensor (LIS) observations to complement the National Lightning Detection Network (NLDN) data 
and better quantify the spatial distribution of LNOx. 
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