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EXECUTIVE SUMMARY 
 
Malaria has been with the human race since ancient times. Nowadays, most of the 
tropical and subtropical countries are endemic with malaria. There are approximately 
300–500 million cases worldwide and at least 1 million deaths in any given year. The 
falciparum malaria, which has become resistant to multiple drugs in most malarious 
areas, may become malignant and fatal without supportive care. The vivax and malariae 
malaria, although less virulent, may relapse and prolong morbidity. Before any effective 
vaccines become available, approximately 40% of the world’s population is at risk.   
 
Malaria transmission depends on the diverse factors that influence the vectors, parasites, 
human hosts, and the interactions among them.  These factors may include, among 
others, meteorological and environmental condition, the innate and adapted immunity of 
the human hosts, the resistance of the vector species to Plasmodium infection, public 
health system, housing standards, vector control, road construction, irrigation projects, 
population movements, and military conflicts.  The most apparent determinants are the 
meteorological and environmental parameters, such as rainfall, temperature, humidity, 
and vegetation.  When other parameters are stable, the meteorological and environmental 
conditions can indeed be considered the driving factors.  Remote sensing has been used 
in recent years for developing malaria early warning systems, particularly for Africa.  For 
countries on which we have focused – Thailand, Indonesia and Afghanistan – there have 
been few studies to examine the dependency of malaria cases on these factors.  
 
In an endemic area, the local adult population may acquire sufficient immunity after 
repeated infections. The disease could be deadly, however, to young children, pregnant 
women, those with depressed immunoresponse, and people new to the area. Because 
malaria is virtually nonexistent in the U.S., Americans traveling abroad and U.S. oversea 
forces are particularly vulnerable.  
 
The decision support system which the Malaria Modeling and Surveillance (MMS) 
Project is aimed to enhance is the Global Situational Awareness Tool (GSAT), a multi-
purpose system at the Air Force Special Operations Command (AFSOC).  Initially 
developed as a civil engineering tool, it has gradually expanded to include other 
functionalities, including disease risk assessments and prevention for U.S. forces.  In 
addition, we also have research partnership with a number of U.S. and foreign 
organizations, including the Armed Forces Institute of Medical Sciences in Thailand, the 
Naval Medical Research Unit-2 in Indonesia, and the public health organizations in these 
countries.  In pursuing the MMS Project, we rely on the research partners for 
epidemiological and entomological data, malaria and vector surveillance, and field work 
support.  Outputs from the MMS Project are shared with the decision support as well as 
the research partners. 
 
The goal of the MMS project is to use NASA data, model outputs, and analytical and 
modeling expertise to enhance the decision support capabilities for malaria risk 
assessment and control.  The capabilities which we have developed concern detection, 
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prediction and reduction of malaria risk.  Our specific objectives are: 1) identification of 
potential larval habitats for major malaria vector species;  2) estimation of current and 
prediction of future malaria risks; and  3) estimation of spatio-temporal transmission 
characteristics for cost-effective malaria control.   
 
The NASA data used in this project include those from MODIS, TRMM, AVHRR, 
SRTM and SIESIP.  The geophysical parameters provided by these sensors include 
precipitation, land surface temperature, NDVI, dew point, elevation, etc.  Relative 
humidity is also used for modeling.  Although not a product, it can be computed from 
other parameters.  Future climate conditions needed for modeling are based on output 
from NASA climate prediction models.  A small amount of commercial high-resolution 
imagery data, such as those from Ikonos, was also used for our study sites. 
 
We have developed a number of analytical methods and models to support the objectives 
of the MMS Project.  For example, we use textural-contextual methods to detect small 
larval habitats, neural network methods for predicting malaria risks, and agent-based 
Monte Carlo model for simulating the spatio-temporal transmission of malaria and testing 
transmission hypotheses.  The rationales for developing these models are briefly 
explained here. 
 
The breeding sites of malaria mosquito species come in all shapes and sizes.   The sites 
could be as large as a rice field for Anopheles maculatus and sawadwongpori, or as small 
as a small stream for An. minimus.  In general, the breeding sites are small.  Because of 
shadowing effects, it is more difficult to identify ground subjects when high spatial 
resolution data is used.  In such cases, using spectral information alone for object 
classification would result in abysmal classification accuracy.  Toward this end, we have 
developed classification techniques that utilize textural, contextual and other spatial 
characteristics for detecting ground objects.   
 
For modeling malaria incidence from environmental and epidemiological time series, the 
main technique we have used in this project is the neural network method.  Neural 
network is a vital part of machine or artificial intelligence, which is a discipline to study 
machine’s ability for learning and adaptation, and exhibition of intelligent behaviors.  
The method is most useful when there is no clear mathematical relationship between 
dependant and independent variables.  As the relationship between malaria transmission 
and the environment is complex and also depends on other parameters, neural network 
method is highly suitable for modeling malaria risk. 
 
For testing transmission hypothesis, we have developed an agent-based discrete event 
simulation model which takes a considerable number of intrinsic and extrinsic parameters 
into account.  The output of this model is the spatio-temporal distribution of malaria 
cases.  As it is difficult to eliminate malaria once a region becomes endemic, this model 
would help identify the key factors that maintain malaria endemicity and the most 
effective way for reducing malaria burdens. In the report, the capabilities developed in 
the MMS Project on malaria risk detection, prediction and reduction are explained, and 
examples from the three countries – Thailand, Indonesia and Pakistan – are given.   
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GSAT consists of both classified and unclassified components.  The unclassified 
component for disease risk assessment is partially based on some other systems or uses 
their output.  Overall, GSAT’s capabilities for disease risk assessment are on a par with 
the contemporary, state-of-the-art systems.  We use a number of contemporary systems to 
illustrate the characteristics of the state-of-the-art capabilities for disease risk 
assessments.  Examples are drawn from the work of WHO-UNICEF RBM, WHO 
EMRO, Dynamic Technology, NOAA, University of London School of Tropical 
Medicine and Hygiene, and Columbia University IRI’s MEWS Net.  A typical 
characteristic of such systems is that the malaria risk assessment is expressed in 
qualitative terms – such as high, medium, low, or free of risks.  On the other hands, the 
malaria risks from our MMS Project are quantitative and expressed in number of malaria 
cases.  As a comparison between a qualitative system and a quantitative system can only 
be qualitative, discussions in this report is necessarily qualitative. 
 
Because these systems’ risk assessments are qualitative in nature, few systems can 
readily be validated quantitatively.  On the other hand, the MMS Project’s risk 
assessments are expressed in malaria cases, and hence can be validated through 
hindcasting.  Hindcasting, also called retrospective forecasting, is an established method 
in quantitative analysis for evaluating the performance of predictive models, and is 
especially popular in Earth science.  In the context of malaria risk assessment, 
hindcasting involves using past environmental and meteorological data to predict past 
malaria case.  By comparing the prediction with the reported cases, the performance of 
the models can easily be validated.   
 
In addition, because information on disease prevalence (including that for malaria) is 
difficult to obtain, state-of-the-art malaria early warning systems often use the climate 
suitability for malaria transmission to represent malaria risk.  Logically, climate 
suitability is a necessary condition for malaria transmission, but not a sufficient condition.  
Because climate suitability is logically and fundamentally different from disease 
prevalence, such representation could be misleading and the assessments from such 
systems must be treated cautiously, especially when users are unaware of the implication 
of climate suitability.  In addition, climate suitability based reasoning may result in a 
static risk which does not change with time or season.  On the other hand, our evidence 
based approach utilizes past epidemiological data and gives dynamic risk, which shows 
variation from month to month, and from season to season.  In the report, the differences 
between climate suitability and actual disease distributions are elucidated with the fact 
that there are few autochthonous malaria cases in the U.S., even the climate is perfectly 
suitable for malaria transmission. 
 
In sum, for the risk prediction capability alone, what distinguish our MMS Project from 
other state-of-the-art malaria early warning systems are: 1) quantitative vs. qualitative 
risks, 2) dynamic vs. static risks, 3) validated vs. hypothetical risks, and 4) integrated vs. 
climate suitability risks.  Our project can therefore provide more accurate, more precise 
risk assessments at a verifiable confidence level.  Finally, we point out that the capability 
for testing malaria transmission hypothesis in our MMS Project is not available in any 
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contemporary malaria early warning systems.  Transmission hypothesis testing allows the 
most cost-effective approach be used for curtailing transmission. 
 
On the other hand, GSAT incorporates a wide range of ancillary information and data for 
its decision making.  Fusing together classified information and the general malaria risk 
assessment capabilities allows additional layers of analyses to be performed, and will 
enhance its risk assessment capabilities.  Hence our conclusion based on a limited 
comparison with its general unclassified functionality may under represent its capability 
and should not be construed as inadequacy of GSAT. 
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1. INTRODUCTION 

1.1 The malaria problem 
Malaria has been with the human race since ancient times.  The name of the disease was 
derived from mala aria, or bad air in Italian.  In history, both in the West and the East, it 
was long thought that the air around swamps was bad for the health and could cause 
illness.  People learned by experience that the bad air problem would disappear by 
draining the swamps.  It was not until the late 18th Century that it was discovered that it 
was actually the mosquitoes around swamps, and not the air, that caused diseases. 
 
The world missed the opportunity for eradicating malaria before DDT was banned.  
Nowadays, most of the tropical and subtropical countries are endemic with malaria. 
There are approximately 300–500 million cases worldwide and at least 1 million deaths 
in any given year. The falciparum malaria, which has become resistant to multiple drugs 
in most malarious areas, may become malignant and fatal without supportive care. The 
vivax and malariae malaria, although less virulent, may relapse and prolong morbidity. 
Before any effective vaccines become available, approximately 40% of the world’s 
population is at risk.   
 
Malaria transmission depends on the diverse factors that influence the vectors, parasites, 
human hosts, and the interactions among them.  These factors may include, among 
others, meteorological and environmental condition, the innate and adapted immunity of 
the human hosts, the resistance of the vector species to Plasmodium infection, public 
health system, housing standards, vector control, road construction, irrigation projects, 
population movements, and war-like conditions.  The most apparent determinants are the 
meteorological and environmental parameters, such as rainfall, temperature, humidity, 
and vegetation.  When other parameters remain more or less constant, the meteorological 
and environmental conditions can indeed be considered the driving factors.  Remote 
sensing has been used in recent years for developing malaria early warning systems, 
particularly for Africa.  For countries on which we have focused – Thailand, Indonesia 
and Afghanistan – there have been few studies to examine the dependency of malaria 
cases on these factors.  
 
In an endemic area, the local adult population may acquire sufficient immunity after 
repeated infections. The disease could be deadly, however, to young children, pregnant 
women, those with depressed immunoresponse, and people new to the area. Because 
malaria is virtually nonexistent in the U.S., Americans traveling abroad and U.S. oversea 
forces are particularly vulnerable.  

1.2 Why the military needs malaria modeling and early warning 
The U.S. has considerable military forces overseas for normal and contingent operations.  
Currently, there are military installations in at least 18 countries.  Most of these countries 
are well developed, such as Britain, Germany, Italy, Japan and Korea, etc., where living 
standards is high and public health service is excellent.  But even in a fairly developed 
country, malaria may still be present.  A noted example is the spill-over of malaria 
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epidemics from North Korea into South Korea across the De-Militarized Zone, around 
which many U.S. military bases are located. 
 
When a country is malarious, it would affect the neighboring countries, because infected 
mosquitoes can fly across borders.  In addition, cross-border movement of refugees or 
transient populations, who may go back and forth for economic reasons, may 
significantly increase the malaria incidence in the neighboring countries.  The best 
example is Thailand, where all the endemic provinces are border provinces. 
 
At the other extreme are the forces in contingent operations, which often take place in 
under developed or developing countries with malaria transmission.  The 2002-2003 
military operations in Cote d’Ivoire and Liberia, the first and the second Gulf Wars, and 
the ongoing Operation Enduring Freedom in Afghanistan and Horn of Africa are all in 
this category.  In such cases, the forces must operate under the most austere 
environments.  Because of the lack of sufficient public health support in many of these 
countries, there are unreported and under reported infectious diseases.  In general, no 
detailed information regarding the diseases, pathogens, their prevalence, vectors and 
vector ecology are available.   
 
The case mortality rate for US overseas forces due to malaria may be low compared with 
that for the civilians in Africa.  But it takes precious manpower and resources away from 
the military to care for those who are infected and in recuperation — an issue especially 
critical in the battlefields.  General MacArthur made a comment on malaria in the Second 
World War, “This will be a long war if for every division I have facing the enemy, I must 
count on a second division in hospital and a third division convalescing from this 
debilitating disease.”  This comment is still valid today as it was 70 years ago.                                                 
 
The concerned military organizations do issue guidelines and warnings to personnel 
going overseas.  But because of the often scarcity of disease information, it is difficult to 
provide more precise advice, and therefore the troops may be over or under prepared. The 
guidelines and warnings do get updated when more disease related information can be 
collected by the deployed troops.  But wars can have devastating effects on vector-borne 
infectious diseases:  Public health services and vector control may be disrupted; housing 
for large population may be damaged; displaced populations are exposed to the 
environment; new larval habitats may be created through altered environment.  Against 
this backdrop, the troops without any immunity to malaria need to move rapidly over 
large unknown territory.  Therefore the disease threat may still be uncertain and may 
change quickly after the troops are deployed. 

1.3 Purpose of the Benchmark Report 
This report reviews the systems engineering development steps through which the MMS 
Project has undergone.  These steps include Evaluation, Implementation, and Verification 
and Validation.  The report then discusses the capabilities of the MMS Project as well as 
the typical capabilities of a state-of-the-art malaria early warning system, which GSAT 
essentially is.  Finally, we discuss the improvements the MMS Project may bring to 
malaria risk assessments and control. 
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2. SUMMARY OF SYSTEMS ENGINEERING ACTIVITIES 

2.1 The goal of the MMS Project 
The objectives of the Malaria Modeling and Surveillance Project are: 1) to identify 
potential malaria vector larval habitats for targeted larval control, 2) to assess malaria 
risks based on past epidemiological data as well as climatic and environmental variables, 
and 3) to simulate spatio-temporal malaria transmission distribution and test transmission 
hypothesis.  The value and benefits of the project are: 1) reduced likelihood of larvicide, 
insecticide, and antimalarial resistance, 2) reduced damage to the environment, 3) 
reduced morbidity and mortality for U.S. overseas forces, 4) improved public health for 
local populations.  

2.2 Remote sensing data or results used in the project 
Since rainfall provides vector breeding sites and prolongs vector life span by increasing 
humidity, precipitation or precipitation anomalies is the attribute most frequently used for 
predicting malaria epidemics.  It has also been shown, however, that rainfall or the lack 
of it has a complex effect on malaria transmission for various parts of the world (Kovats 
et al., 2003).  For example, although moderate rainfall may promote malaria 
transmission, intense and prolonged rainfall may flush away larval habitats and thus 
reduce transmissions.  Similarly, lack of rainfall does not always reduce larval 
populations.  On the contrary, lack of rainfall may create new habitats, such as pools and 
puddles, in some regions and therefore increase larval population.  In addition, droughts 
may be deleterious to predator populations or may cause human populations with no 
immunity to move to areas endemic with malaria (Kovats et al., 2003).  These factors 
may indirectly increase overall malaria transmissions.  As rainfall or the lack of rainfall 
may influence malaria transmission in so many complex ways, a simplistic mathematical 
representation between rainfall and malaria transmission would be inadequate for 
modelling malaria transmission. 
 
Another meteorological variable that is often used for predicting malaria transmission is 
temperature.  Warmer temperature hastens larval and vector development and therefore 
increases the rate of vector production (Craig et al., 1999).  It also shortens the 
sporogonic cycle to allow vectors a longer period to transmit malaria.  In addition, 
warmer air holds more moisture and therefore enhances mosquito survivorship. 
 
Relative humidity is important for the survivorship of malaria vectors.  While it is not a 
standard remote sensing data product, relative humidity can be computed from dew point 
and air temperatures, which are usually provided for from satellite instrument that 
measures atmosphere properties 
 
Vegetation is often associated with vector breeding, feeding, and resting locations.  A 
number of vegetation indices have been used in remote sensing and Earth science 
disciplines.  The most widely used index is the Normalized Difference Vegetation Index 
(NDVI) (Tucker, 1979).  It is simply defined as the difference between the red and the 
near infrared bands normalized by twice the mean of these two bands.  For green 
vegetation, the reflectance in the red band is low because of chlorophyll absorption, and 
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the reflectance in the near infra-red band is high because of the spongy mesophyll leave 
structure.  The more vigorous and denser the vegetation is, therefore, the higher the 
NDVI becomes.   
 
NDVI has also been used as a surrogate for rainfall estimate.  It is an effective measure 
for arid or semi-arid region.  For tropical regions where ample rainfall is normally 
received, vegetation index is a less sensitive measure for estimating rainfall.  The mean 
vegetation index over a region reflects the degree of urbanization or lack of vegetation.  
In this sense, NDVI in a grid cell is used as an indicator for the mean level of vegetation 
present in the cell. 
 
When atmospheric parameters for the future are needed, we use the forecast output from 
the NASA Seasonal and Interannual Prediction Project (NSIPP).  After our malaria risk 
prediction model is trained, feeding estimated future environmental and meteorological 
data into the model will produce the estimated malaria incidence in the future.  Naturally, 
any uncertainties or errors in the seasonal and Interannual forecasts will give rise to 
uncertainties or errors in the malaria incidence output.   
 
The geophysical parameters and the instruments or models from which they are derived 
are shown in Table 1. 
 
 
Table 1.  Geophysical parameters and the instruments or models from which they are 
derived.   X indicates that data products are available. 
  

 
Ground 
Cover 

Vegetation 
Index 

Surface 
Temperature 

Rainfall Humidity 

ASTER computed computed  inferred  
AVHRR computed X  inferred  
MODIS computed X X  computed 
TRMM    X  
NSIPP   X X X 
Ikonos computed computed  inferred  

 

2.3 The Integrated System Solution diagram 
An Integrated System Solution Diagram illustrating the important elements of the MMS 
Project and how NASA data and results may enhance our partner’s decision support 
capabilities concerning malaria is shown in Fig. 1. 
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Figure 1.  Integrated System Solution diagram.  It illustrates the input and output flows, 
the malaria models in the MMS Project, and the value and benefits the project brings. 

2.4 Summary of the Evaluation efforts 
The Global Situational Awareness Tool (GSAT) is a system developed by the Air Force 
Special Operations Command (AFSOC) for assessing environmental and health issues of 
concerns for U.S. forces.  Its predecessor is the Global Operational Environmental 
Review (GOER).  GSAT incorporates human health and disease-related information in 
addition to environmental data.  The system is built upon a set of linked databases with 
an intelligent, user-friendly interface.  It is envisioned to be a knowledge- or rule-based 
system.  The rules will be written by a group of experts to achieve outcomes as if human 
experts are performing similar analysis.   
 
In the Evaluation Report, we concluded that the goals of GSAT and NASA’s MMS 
Projects were clearly compatible, and that NASA data, results, and the output from MMS 
would enhance GSAT’s capability.  Output from the MMS Project, in particular the 
malaria risk assessments, will be input into GSAT.  Certain NASA satellite data products 
are already included in GSAT’s input streams.  If needed, we will help GSAT to utilize 
other NASA data products, especially those used in the MMS Project. 
 
When GSAT is fielded, the Air Force will gain a computerized environmental and 
medical planning capability.  The combined capabilities of the malaria assessments and 
GSAT will provide the U.S. Air Force and its partners with a decision support tool 
valuable to U.S. military and civilian sectors.  Because U.S. oversea forces generally 
assist the local public health organizations in disease prevention and control, the 
enhanced GSAT will also benefit the local populations. 
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2.5 Significance of the countries studied in the MMS Project 
The countries for which we have studied the malaria risks include Thailand, Indonesia 
and Afghanistan.  Each country has its unique malaria problems.  Coincidentally, these 
are also the countries in which the U.S. has significant interest.   
 
For example, Thailand is the main US ally in the Indo-China Peninsula.  The Navy uses 
the port facilities in Thailand.  And there are many US governmental and civilian 
organizations in Thailand.  Every year, there is a large-scale, six-week joint Cobra Gold 
exercise with the Thai military and the participation from other Pacific allies.  In the 2007 
Cobra Gold exercise, five countries participated and 10 countries sent observers.  
Thailand is the most developed country in the Greater Mekong Subregion and has the 
best public health service in the region.  The GMS itself, however, has the misfortune of 
being the world’s epicenter of multi-drug resistant falciparum malaria.  While Thailand 
has reduced its malaria burden in most provinces to a very low level, the malaria problem 
persists in the provinces next to Myanmar, Cambodia and Malaysia.  Because of the 
displaced populations in these provinces and the transient workers crossing the border 
frequently to seek better economic opportunity, reducing malaria burden in the border 
provinces is difficult.  The discovery of artemisinin-resistant falciparum malaria in 2008 
in Cambodia is worrisome, as artemisinin is the most effective medicine and there is not 
new antimalarial on the horizon. 
 
Indonesia is the largest muslin country in the world with a moderate political view and 
has a democratic government.  Until several years ago, the country still grabbled with 
extremist and separatist movements and the remaining problems from the Asian 
economic crisis.  However, political and economic situations have since much improved.  
Along with Singapore and Malaysia, Indonesia controls the 600 mile long Malacca Strait, 
through which approximately 35% of the world’s oil production is transported on oil 
tankers.  Threats to marine shipping from the modern-day pirates and occasionally from 
terrorists are problematic. The malaria endemicity was in decline in the early nineties.  
But most of the malaria control efforts were abandoned after the Asian economic crisis 
started.  The government was also decentralized in this period and the responsibility for 
malaria control was relegated to the provincial government.  Currently, the malaria 
endemicity on Java and Bali is low.  But malaria is a problem on the outer islands.  With 
over 18,000 islands, it is difficult to implement an effective malaria control strategies.  In 
addition, topographic and geological characteristics in some regions, like the Menoreh 
Hills in Central Java, are difficult for effective larval control.  Aside from drug-resistant 
falciparum malaria, there are serological evidences for the presence of drug-resistant 
vivax and malariae malaria.  As prescription antimalarials are freely available, self-
administered incomplete treatment is likely the major reason why the parasite species 
have developed drug resistance. 
 
From the Soviet invasion in 1979 until today, there have been virtually non-stopped 
instability and military conflicts in Afghanistan.  Currently there are ISAF and NATO 
forces from 37 countries working with the US in combat and other operations in various 
parts of Afghanistan.  Because of years of instability, the public health infrastructure in 
Afghanistan had all but disappeared by 2004; the once successful malaria vertical control 
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program was long abandoned.  And malaria has become a significant public health 
concern in Afghanistan despite its relatively cool climate and arid environment.  
Currently, approximately 60% of the population, or nearly 13 million people, live in 
endemic area.  It is only since 2004, through the collaborations among WHO, Afghan 
Ministry of Public Health, NGOs and international donors, the efforts of rebuilding the 
public health infrastructure have begun.  Nowadays, nearly 12,000 health facilities1 have 
been established, along with clinics of various levels.  It is the hope that the Basic 
Package of Health Services2 (BPHS) can be afforded to a significant portion of the 
population.  Although not a tradition practice, insecticide-treated bed nets (ITN) have 
been gradually accepted through extensive public awareness campaigns and mobile, 
subsidized sales.  For some localities, more than 60% of the residents own bed nets.  As 
indoor residual spraying (IRS) is difficult to implement in the current environment, 
broadening the ITN use is a viable approach for reducing malaria infections.  The 
continued, consistent and proper use of ITNs, however, still requires sustained awareness 
campaigns.   

2.6 Summary of the implementation efforts 
To support the objectives of the MMS project, we have developed a number of 
mathematical techniques and models to assess malaria risks.  These techniques are briefly 
explained in the following.  Examples for using these techniques, as well as their 
quantitative performance measures, are given in Section 2.7, Summary of the V&V 
Efforts. 

2.6.1 Textural-contextual classification methods 

Ground cover classification using satellite imagery data of medium spatial resolution, 
such as Landsat data, normally involves only spectral information – that is, the radiance 
or instrument count in each spectral band.  Using the same techniques on high spatial 
resolution data, such as Ikonos or Quickbird data, may lead to abysmal classification 
accuracy.  This is most often due to the fact that shadowing effects – either self 
shadowing or shadows cast by nearby objects – become proportionally very important 
when instrument footprint is very small.  To maintain classification accuracy, spatial 
information must also be used in addition to spectral information.  Toward this end, we 
have developed techniques that utilize both textural and contextual information in 
classification.  Such techniques greatly improve the ground cover classification accuracy 
when high spatial resolution satellite data is used. 

2.6.2 Neural network methods 

Various methods and techniques, including generalized linear models, regression trees, 
genetic algorithms and neural networks have been used in the MMS project to 
statistically model the relationship between malaria transmission and environmental or 
contextual determinants.  Neural Network methods are what we most frequently used for 
modeling malaria risks. 
                                                 
1 Including District Hospitals, Comprehensive Health Centers, Sub-Health Centers, Basic Health Centers, 
Mobile Clinics, and Health Posts. 
2 In addition to malaria, the BPHS consist of tuberculosis, HIV/AIDS, immunization, maternal and child 
health, Integrated Management of Childhood Illness (IMCI), etc. 
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This methods have been successfully used in many applications, including classification, 
regression, time series analysis, and handwritten character recognition (Nelson & 
Illingworth, 1990).  In this approach, the probability density of the data is not assumed to 
follow any particular functional form.  Rather, the characteristics of the probability 
density are determined entirely by the distribution in the data, hence, it is a data driven 
approach. This method is most suitable for problems that are too complex to be expressed 
in a closed, analytical form. For problems in which there are hidden, implicit variables, 
this approach is particularly suitable, as it is difficult to either specify the variables 
properly or sufficiently account for their effects mathematically.  This method is called 
neural network because it resembles how biological neurons function (Gardner, 1993). 
Nodes in a neural network are analogous to neurons, the connections between the nodes 
are analogous to synapses. The behavior of the activation function corresponds to the 
firing of a neuron. The weights of the connections can be trained to give the aggregate of 
neurons a specific functionality. A network may accommodate complicated geometries in 
multidimensional space by incorporating hidden layers. Without hidden layers, the neural 
network method will be equivalent to the generalized linear model. 
 
To train our neural network model, we feed observed or measured parameters from the 
past into the network. The input parameters may consist of meteorological, 
environmental and other variables; and the output is the corresponding malaria cases for 
that specific location and time. Once trained, the network will be able to estimate the 
cases at some other time period using the parameters corresponding to that time period. 

2.6.3 Dynamic transmission model 

Agent-based discrete event simulation is the technique we use for modeling the malaria 
transmission dynamically over time and space.  In this model, the detailed interactions 
among the vector life cycle, the parasite’s sporogonic cycle, and the human disease cycle 
are simulated for a real or realistic location.  Extrinsic factors affecting malaria 
transmission are obtained through remote sensing or field observations.  Intrinsic factors 
describing the parasitological and entomological characteristics are based on empirical or 
laboratory data.  As parasitological, entomological and malariological knowledge is 
needed for such modeling, we collaborate with scientists at the Armed Forces Research 
Institute of Medical Sciences and the Walter Reed Army Institute of Research in 
developing this model.  This model is useful for testing transmission hypotheses, such as 
larval and vector controls, abundance of breeding sites, housing construction, locations of 
farm animals, asymptomatic infections, availability of health care, arrival of refugees or 
foreign forces, etc.  This model helps identify the most cost-effective ways for reducing 
malaria endemicity. 

2.7 Summary of the V&V efforts 
In this section, examples are given to illustrate how the techniques or models we have 
developed in the MMS project can be used for malaria risk detection, prediction and 
reduction.  At the same time, the performance of these models can be obtained by 
comparing the modeled outcome with the actual condition.  Thus these examples also 
serve the purpose of validating the models. 
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2.7.1 Risk detection 

Common classification techniques can be used for identifying large larval habitats such 
as rice fields or water bodies.  But special techniques must be used for identifying small 
larval habitats using satellite data with high spatial resolution.  For example, Anopheles 
sinensis is the main vector species for transmitting vivax malaria in Korea.  Irrigation and 
drainage ditches are the most common larval habitats for An. sinensis.  In the following 
example, we use pan-sharpened Ikonos data, with an effective spatial resolution 1-4m, to 
identify these ditches.  The per-pixel, spectral information only classification accuracy is 
approximately 72%.  As shown in Fig. 2, various spatial techniques can be used to 
improve the classification.  Using a textural-contextual technique, the accuracy can be 
enhanced to 92%.  A classification result is shown in Fig. 3. 
 
 
 
 
 

 
 
Figure 2.  Classification accuracy of irrigation and drainages ditches for a test site in 
Korea using pan-sharpened Ikonos imagery data. 
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Figure 3.  Some of the irritation and drainage ditches identified with the textural-
contextual technique. 

2.7.2 Risk prediction 

Once a model is trained with past epidemiological data for a region, current and future 
malaria prevalence can be estimated by using current or future environmental parameters 
as input to the model.  In the hindcasting (or retrospective forecasting) mode, the model 
is used to estimate the historical cases.  The model’s estimation accuracy can then be 
determined by comparing the model output with the events that took place in the past.  
Fig. 4 shows the comparison of actual provincial malaria prevalence in Thailand (left 
panel), and the hindcast prevalence (right panel).  The hindcast result closely resembles 
the actual distribution, and is sufficiently accurate for all practical public health purposes. 
It can be observed that the hindcast slightly overestimates the malaria prevalence.  This 
simply means that the malaria control effort implemented in the country was effective 
and result in a lower prevalence than what was warranted by environmental condition. 
 
Actual, modeled and hindcast malaria prevalence can also be displayed together for a 
single province to show seasonal variation and how prevalence changes over time.  For 
example, Fig. 5 shows such time series for the Takhar Province of Afghanistan.  Takhar 
is one of the high risk provinces designated by WHO EMRO (Fig. 10).  The training 
result (blue) follows the actual time series (red) closely.  The hindcast malaria prevalence 
slightly under-estimates the actual prevalence, indicating the malaria situation is slightly 
worse than what is warranted by environmental factors.  As Afghanistan has been in an 
unstable situation, this could be attributed to quite a few factors. 
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Figure 4.  Actual malaria prevalence (left panel) and hindcast malaria prevalence (right 
panel) for the more endemic provinces in Thailand, from Kiang et al. (2006) 
 
 

 
 
 
Figure 5.  Actual (red), modeled (blue), and hindcast (green) malaria cases for the Takhar 
Province of Afghanistan. 

2.7.3 Risk reduction 

The dynamic transmission model simulates malaria transmission under various scenarios. 
As explained in Section 2.6.3, this model can be used to identify the key factors that 
perpetuate malaria transmission in a region.  It can also be used to identify the most cost-
effective measure to reduce malaria transmission.  This model is validated by comparing 
the simulated results with the field data at a Thailand test site.  AFRIMS and WRAIR 
have worked on this test site for more than five years, and may continue using it for 
testing malaria vaccines.  Among other activities, the field work involved taking blood 
samples from most villagers every two weeks.  Because it is very labor intensive and 
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rather costly to conduct field work, field measurements do not have the temporal 
resolution that is easily achievable in simulation.  For example, simulated malaria 
prevalence at three different mosquito loading, as well as field measured prevalence with 
falciparum and vivax malaria combined is shown in Fig. 6.  The middle, blue curve is for 
the simulated prevalence at a nominal mosquito loading.  Because all residents tested 
positive were given antimalarials, prevalence decreases year after year. 
 

 
 
Figure 6.  Simulated malaria prevalence for three mosquito loadings (curves) and field 
measured prevalence with falciparum and vivax malaria combined (band).  Good 
agreement is shown. 
 
Fig. 7 shows the simulated sporozoite rate, which is the fraction of all the mosquitoes that 
are infected with either falciparum or vivax malaria, at three mosquito loadings.  The blue 
curve is at nominal mosquito loading.  The range of An. minimus that were caught and 
shown infected with either the falciparum or the vivax parasites are shown in bands.  
Altogether, approximately 11,000 An. minimus were captured.  Needless to say, our 
collaborators undertook tremendous efforts to analyze the field work results. 
 
 

 
 
Figure 7.  Simulated sporozoite rates and comparison with field observed sporozoite rates 
for An. minimus infected with Plasmodium falciparum or vivax.  Good agreement is 
shown.  
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3. BENCHMARKING 
 
In this Section, we will describe the representative, state-of-the-art capabilities for 
malaria risk assessments derived from remote sensing data. These capabilities were 
developed by university affiliated groups commissioned by the WHO or NGOs, by DoD 
contractors, or by government agencies to assess malaria risks.  The GSAT is built upon 
these prevailing capabilities and also uses some of their output.  Its capabilities for 
malaria risk assessments are essentially on a par with these modern systems.   
 
Comparing them with the key capabilities developed in our MMS Project, as shown in 
the examples in Section 2.7, it will be apparent that the MMS capabilities offer more 
accurate and more precise risk assessments at a verifiable confidence level.   
 
In addition to the state-of-the-art capabilities, the GSAT also consolidates other data and 
ground information, much of it classified, for its decision making.  For example, 
additional layers of Bayesian analyses using other data available to GSAT can indeed 
improve the assessment accuracy.  Such combination would effectively enhance the 
overall capabilities.  Because the benchmark process has limited scope and involves only 
open-source materials, the conclusion given herein should not be construed as a reflection 
of GSAT’s inadequacy. 
 
The readers must also be reminded that the state-of-the-art capabilities of the 
contemporary systems, including our own MMS Project, continue to evolve.  Therefore, 
the comparison and conclusion given in this section will only remain valid before any 
systems evolve significantly. 

3.1 Quantitative dynamic vs. qualitative static risks 
In modern, state-of-the-art malaria risk assessment systems, the risks are typically 
expressed in qualitative terms.  A region can be designated as malaria risk free to high 
risk or to very high risk.  If quantitative labels are associated with qualitative risk 
categories, the range for each category is usually very broad.  In addition, such risk is 
often presented as a static risk, even though malaria risk is known changing with time and 
with season.  In the following, we will use four examples – three from WHO and one 
from a NOAA project – for illustration. 

3.1.1 World malaria risk in WHO 2005 report 

The following example, as shown in Fig. 8, illustrates the world’s malaria risk in 2003, as 
published by WHO in 2005 (WHO & UNICEF, 2005).  Five qualitative categories of 
malaria endemicity– no malaria, low, moderate, high, and very high – are used without 
indication of number of malaria cases.  This representation is also static, with no variation 
with respect to month or season. 
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Figure 8.  Global distribution of malaria endemicity in 2003, from WHO World Malaria 
Report 2005. 
 

3.1.2 World malaria risk in WHO 2008 report 

In this example, as shown in Fig. 9, five categories of malaria incidence are given to 
indicate the malaria incidence at country level (WHO, 2008).  There is a quantitative 
scale given.  Each category, however, is fairly broad. 
 

 
 
Figure 9.  Estimated incidence of malaria per 1000 populations in 2006, from WHO 
World malaria report 2008. 
 

3.1.3 Afghanistan malaria risk in WHO EMRO 2009 report 

This example, as shown in Fig. 10, illustrates the malaria risk in Afghanistan as reported 
by WHO EMRO (2009).  Three levels of static risks are shown. 
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Figure 10.  Malaria risk distribution at provincial level in Afghanistan as reported by 
WHO EMRO and by Afghanistan Ministry of Health.    

3.1.4 Malaria risk map from a NOAA project 

This example, as shown in Fig. 5, is based on using vegetation health index to monitor 
mosquito-borne diseases (Kogan, 2009).  Three static qualitative categories of malaria 
risk – low, mixed, and high – are given. 
 

 
 

Figure 11.  Malaria risk map derived from vegetation health indices. 
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3.2 Integrated vs. Climate suitability risks 
Quite a few state-of-the-art malaria early warning systems, as well as some early warning 
systems for other diseases, utilize climate suitability as the basis for deriving disease 
risks.  In the following, we will explain the limitation of such approach and the potential 
issues such approach may bring to disease risk assessments. 

3.2.1 The meaning of climate suitability 

The range of rainfall and temperature needed to maintain stable malaria transmission is 
called climate suitability (MARA/ARMA, 1998; Craig et al., 1999; Small et al., 2003; 
Omunbo et al., 2004; Hay et al., 2004).  For example, in African regions where the 
Anopheles gambiae complex is the dominant species for transmitting falciparum malaria, 
climate suitability is associated with a temperature between 18º and 32º C and a rainfall 
exceeding 80 mm per month for at least 3 to 5 months (MARA/ARMA, 1998; Craig et 
al., 1999). 
 
Climate suitability is a useful concept for describing the potential for malaria 
transmission as long as the contextual determinants for malaria transmission, most of 
them remained implicit or unknown, do not vary significantly.  A list of some of the 
possible contextual determinants is given in Fig. 15.  In general, the concept of climate 
suitability is only applicable to a restricted spatial and temporal domain that has very 
similar characteristics to the domain where the climate suitability is obtained.   

3.2.2 Transmission suitability for malaria in Afghanistan 

Climate suitability can be expanded from rainfall and temperature to include other 
environmental parameters, such as elevation, distance to potential larval habitats, and 
other socioeconomic variables.  Fig. 16 shows a more general suitability for malaria 
transmission in Afghanistan (Brooker et al., 2006).  The scale in the figure indicates the 
probability with or without transmission, with 1 indicating there is transmission, and 0 no 
transmission.  This probability does not indicate transmission intensity or malaria 
prevalence.  As with the classical climate suitability, care must be exercised in applying 
such criteria even in the same country.  For example, housing construction, people’s 
profession, personal protection, and socioeconomic status of the neighborhood may all 
override the suitability for transmission.   
 



 23

 
 
Figure 12.  A more general suitability for malaria transmission in Afghanistan when 
parameters beyond rainfall and temperature are included, from Brooker et al. 2006).  This 
probability does not represent transmission intensity. 
 

3.2.3 Malaria risk map from Dynamic Technology 

Fig. 13 shows a static malaria risk map derived from climate suitability for approximately 
12 countries in Eastern Africa (Thomas et al., 2004).  Five qualitative classes are given.  
Needless to say, the contextual determinants that affect malaria transmission in such a 
large geographic region may have significant variations. 
 

 
 
Figure 13.  East African malaria risk map from Thomas et al. (2004). 
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3.2.4 Malaria risk map from MEWS Net 

Fig. 14 shows a malaria risk distribution based on climate suitability for most of Africa.  
The same concern exists here, that contextual determinants, which also affect disease 
transmission besides environmental parameters, may vary widely across the continent. 
 

 
 
Figure 14.  Climatological suitability for malaria transmission in 2009 from IRI website 
(ingrid.ldeo.columbia.edu/maproom/.Health/.Regional/.Africa/.Malaria/.CSMT) 
 

3.2.5 What is missing in climate-suitability based reasoning 

Climate suitability indicates how favorable the regional climate is for stable malaria 
transmission.  Naturally, it depends on the ecology of the dominant malaria vector 
species, and varies with geographic region (WHO & UNICEF, 2005).  Climate suitability 
can also be extended beyond the basic climatic promoters – rainfall and temperature – to 
include other environmental parameters, as shown in the Afghanistan example described 
previously in this section.  In general, how much the malaria transmission potential 
associated with climate suitability can be materialized into actual malaria transmission 
depends on many other contextual determinants.  Factors like socioeconomic conditions, 
public health infrastructures, herd immunity, irrigation and transportation projects, 
natural disasters, and military conflicts, have overriding effects on malaria transmission.  
Other contextual determinants very relevant to malaria transmission are shown in Fig. 15.  
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By the same token, merely using rainfall and temperature as the main determinants and 
extrapolate them to an entire region or continent to estimate malaria transmission is not 
scientifically correct. 
 
To explain this problem using terminology in logic, climate suitability is a necessary 
condition for malaria transmission, but not a sufficient condition.  A sufficient condition 
for malaria transmission would comprise all the contextual determinants that influence 
malaria transmission.  As in general it is incorrect to treat a necessary condition as a 
sufficient condition, so is using climate suitability indiscriminatingly as the basis to 
estimate malaria risks. 
 
 

 
 
Figure 15.  Climate suitability is a necessary, but not a sufficient condition for malaria 
transmission.  Using only climate suitability to infer malaria transmission is logically 
incorrect and may lead to questionable conclusion. 
 
Because it usually needs significant resources to gather the quantitative information on 
these background contextual determinants, many malaria studies or models simply leave 
them out.  But simply ignoring them will run into the risk of treating necessary condition 
as sufficient condition.  The way to avoid this dilemma is to use the actual local 
epidemiological data, as such data reflect the general constraints imposed by the 
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determinants that are not measured.  In the MMS project, our risk assessments or 
prediction are always based on epidemiological data.  Although it is often difficult to 
obtain epidemiological data, any such information, however little, would help to anchor a 
theoretical interpretation to reality.  Our models would also allow disjoint spatiotemporal 
epidemiological data to be used (Fig. 1).  In addition, by minimizing chi-squared errors 
instead of mean-squared errors, our models also have a built-in tolerance on the 
uncertainty of epidemiological records. 

3.2.6 Why the US does not have malaria 

Perhaps the best example for illustrating the fallacy of indiscriminately using climate 
suitability to derive malaria risk is the absence of malaria in the US.  Malaria used to be a 
serious problem in North America.  In the late 19th Century, the entire US to the east of 
the Rocky Mountains, except the Appalachian Mountains, was endemic with malaria 
(shown in Fig. 16), so were some regions at the West Coast and a significant portion of 
Canada.  In 1946, the Communicable Disease Center was established by the Congress for 
the main mission of combating malaria.  It was not until the 1950s when malaria was 
eradicated.  And this agency became the predecessor of the current CDC.  The climate in 
the US is still suitable for malaria transmission; and the malaria mosquito vectors are still 
present in the environment.  But the mosquito vectors no longer carry the plasmodium 
parasites.  Nowadays autochthonous transmission of malaria is very rare (CDC, 2004), 
and mostly can be traced to malaria infections acquired overseas.   If the logic of climate 
suitability for malaria transmission were to apply to the US, most of US would be 
classified as endemic today. 
 
 

 
 
Figure 16.  Historical malaria distribution in the US (from 
www.cdc.gov/malaria/history/index.htm). 

. 
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3.3 Validated vs. hypothetical risks 
State-of-the-art malaria risk assessment systems often do not have a built-in validation 
step.  This may be simply due to the fact that traditionally qualitative system is not 
subject to quantitative analysis.  Lack of validation, however, may leave a user wonder 
how much confidence and uncertainty can be associated with the risk assessments, 
especially when the risk is described qualitatively.  On the other hand, all the results and 
outcomes from our MMS project are quantitative, and lend themselves to validation.  
Performance measures are associated with both the training and the prediction stages of 
our models.  Hindcasting, or retrospective prediction, is what we normally use to derive 
model performance.  In hindcasting, past environmental data are input into our trained 
models to estimate the past malaria cases.  The performance can then be obtained by 
comparing the difference between the actual malaria cases with the modeled cases.  As an 
example, Fig. 17 shows the malaria time series for Central Java, the trained malaria 
distribution, and the predicted distribution.  Both the training and prediction performance 
can be easily computed and expressed as root-mean-squared (RMS) errors or other 
measures.  Validating is therefore straightforward and a regular step in the modeling 
process. 
 
On the other hand, when malaria risks are expressed in qualitative terms, such as risk-
free, low, medium, or high risk, there may be no consensus on how the modeled risks can 
be validated, especially when there are no malaria case numbers associated with each risk 
categories. 
 

4. CONCLUSIONS 
 
The Global Situation Awareness Tool is a multi-purpose decision support system at the 
Air Force Special Operations Command.  Initially developed as a civil engineering tool, 
it has gradually expanded to include other functionalities, including public health, disease 
risk assessments and prevention.  GSAT consists of both classified and unclassified 
components.  The unclassified component for disease risk assessment is partially based 
on some other systems or uses their output.  Overall, GSAT’s capabilities for disease risk 
assessment are on a par with the modern, state-of-the-art systems. 
 
We use a number of contemporary systems to illustrate the characteristics of the state-of-
the-art capabilities for disease risk assessments.  Examples are drawn from the work of 
WHO-UNICEF RBM, WHO EMRO, Dynamic Technology, NOAA, University of 
London School of Tropical Medicine and Hygiene, and Columbia University IRI’s 
MEWS Net.  The output of these systems or projects can be characterized as – qualitative 
and stationary risk, climate suitability based risk, and hypothetical risk.  Correspondingly, 
we show that the output from our Malaria Modeling and Surveillance Project can be 
characterized as – quantitative and dynamic risk, integrated disease risk, and validated 
risks.  Our project can therefore provide more accurate, more precise risk assessments at 
a verifiable confidence level. 
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Two other capabilities in our MMS Project – textural-contextual classifier and agent-
based dynamical malaria transmission model – are useful for detecting small larval 
habitats and identifying cost-effective ways to reduce malaria transmission.  Similar 
capabilities are not available in these contemporary systems. 
 
It should be noted, however, that all systems evolve, including our own.  Conclusions 
from the comparison based on a snapshot of the current capabilities will only remain 
valid before any systems evolve substantially.  Furthermore, GSAT’s decision is based on 
a wide variety of information, both unclassified and classified.  Such combination allows 
additional layers of analyses to be performed and may amplify its overall capability.  
Hence the conclusion given here should not be construed as a deficiency of GSAT. 
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ACRONYMS 
 
AFRIMS Armed Forces Research Institute of Medical Sciences 
AFSOC Air Force Special Operations Command 
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 
AVHRR Advanced Very High Resolution Radiometer 
BPHS  Basic Package of Health Services 
CDC  Centers for Disease Control and Prevention 
EMRO  Eastern Mediterranean Regional Office 
GOER  Global Operational Environmental Review 
GSAT  Global Situational Awareness Tool 
IRI  International Research Institute for Climate and Society 
IRS  indoor residual spraying 
ISAF  International Security Assistance Force 
ITN  insecticide-treated bed nets 
MEWS Malaria Early Warning System 
MMS  Malaria Modeling and Surveillance 
MODIS Moderate Resolution Imaging Spectrometer 
NASA  National Aeronautics and Space Administration 
NDVI  Normalized Difference Vegetation Index 
NOAA  National Oceanic and Atmospheric Administration 
NSIPP  NASA Seasonal and Interannual Prediction Project 
RBM  Roll Back Malaria 
RMS  root-mean-squared 
SIESIP  Seasonal Interannual Earth Science Information Partner 
SRTM  Shuttle Radar Topography Mission 
TRMM Tropical Rainfall Measuring Mission 
UNICEF United Nations Children's Fund 
V&V  Verification & Validation 
WHO  World Health Organization 
WRAIR Walter Reed Army Institute of Research 
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