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Executive Summary (NCAR) 

Few, if any, high resolution, weather products exist today that depict the current and future 
location of oceanic convection and associated hazards such as turbulence, icing and lightning. 
Federal Aviation Administration (FAA) projections suggest that the capacity growth rate for U.S. 
commercial air carriers within international markets will average 5.2% per year between 2010-
2025 (FAA 2008). Likewise, revenue passenger miles (RPM) are forecast to increase an average 
of 5.2% per year while enplanements are forecast to increase an average of 4.6% per year during 
this same period. With this expected increase in international air traffic and passenger volume, an 
even greater need exists for high resolution, weather products for the oceanic aviation 
community. Currently, operational, international significant meteorological information 
(SIGMETs) statements are issued every four hours for convection, turbulence and icing over 
domains of such large extent that aircraft on oceanic routes must traverse, rather than avoid, the 
domain. Oceanic regions present unique challenges for weather product development due the 
scarcity of meteorological observations and the necessary reliance on satellite observations as a 
primary means of weather depiction.  

In this project, we address the needs of the oceanic aviation community through the development 
of oceanic convective diagnosis and nowcasting products that are based on geostationary and 
polar-orbiting satellite data and global numerical model fields. These products are available in 
real-time through a web-based display and are in alignment with the concept of the four-
dimensional weather data cube envisioned by the Joint Program Development Office (JPDO) 
Next Generation Air Traffic System (NextGen). 
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Annual Progress Report 
Oceanic Convective Weather Diagnosis and Nowcasting 

1. Introduction (NCAR) 
This report summarizes the accomplishments of the National Center for Atmospheric Research 
(NCAR), the Naval Research Laboratory (NRL) and the Massachusetts Institute of Technology 
(MIT) Lincoln Laboratory (LL) for the National Aeronautics and Space Administration (NASA) 
Research Opportunities in Space and Earth Sciences 2005 (ROSES 2005; NNH05ZDA001N-
DECISION) award for the proposal entitled “Oceanic Convective Weather Diagnosis and 
Nowcasting (NNA07CN14A)”. This collaborative group is developing convective detection and 
nowcasting products for use by the oceanic aviation community by providing 0-hr, 1-hr and 2-hr 
nowcasts of convection location. This 3-yr ROSES grant was preceded by a 1-yr NASA 
Cooperative Agreement Notice (CAN) NNH04ZYO010C for a proposal entitled “Oceanic 
Convective Weather Diagnosis and Nowcasting (NNS06AA22G)”. 

During Year 1 of this ROSES grant and the 1-yr CAN grant (Kessinger et al., 2007), efforts were 
focused on the development of the software engineering infrastructure required for ingesting 
NASA mission products into the Convective Nowcasting Oceanic (CNO) system. The greater 
Gulf of Mexico domain (including the Caribbean, western Atlantic and eastern Pacific Oceans) 
has been the primary area of interest. Efforts were undertaken to ingest and apply quality control 
techniques to NASA mission products. Global Forecast System (GFS) model-based forecasting 
fields were described and their usefulness explained. The object-tracking methodology applied to 
extrapolate existing storms was initiated and examples compared to the 1-hr and 2-hr validation 
fields. The web site used for real-time display of products was also developed 
(http://www.rap.ucar.edu/projects/ocn). 

In this Year 2 report, progress made on tasks is arranged into three topic areas: “Topics Related 
to the Convective Diagnosis Oceanic (CDO) Product”, “Topics Related to the Convective 
Nowcasting Oceanic (CNO) Product” and “General Topics”. Within the first topic, the case 
study of Hurricane Dean is described in Section 2 with the description of the CDO product given 
in Section 3. Efforts involved with validation of the CDO product against mission products from 
the Tropical Rainfall Measuring Mission (TRMM) satellite are described and results presented in 
Section 4. Further, efforts to upgrade the NRL Cloud Classification (CC) algorithm are described 
and results from a comparison to a second cloud typing algorithm are presented in Section 5. 
Within the second topic, Section 6 is a description of preliminary results for the characterization 
of the environment within which oceanic convection initiates to better understand potential 
forcing mechanisms. The CNO system, as currently configured, is validated in Section 7. 
Preliminary efforts to utilize a machine learning technique called Random Forest within the 
CNO are described in Section 8. Progress related to the inclusion of geostationary satellite-
tracked wind fields into the extrapolation of CDO-identified storms is described in Section 9; 
quantifiable results are not yet completed to ascertain the effect that these winds may have to 
improve the statistical performance of extrapolation. Section 10 describes a brief study to 
examine the potential usefulness of the presence of African dust aerosols within the CNO system. 
For the third topic area, the addition of the near real-time North Atlantic cloud top height product 
to the project web pages (Section 11) is described, a summary and outlook for Year 3 (Section 
12) is provided, and all journal and conference papers written during the year (Section 13) as 
well as all references used in this report are listed (Section 14). 
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Topics Related to the Convective Diagnosis Oceanic (CDO) Product 

2. Case Study Selection (NCAR) 
Hurricane Dean was the first land-falling Category 5 hurricane in the Atlantic basin since 
Hurricane Andrew in 1992 and was responsible for 32 fatalities. Dean traversed the 
Atlantic, Caribbean and Gulf of Mexico domains from 12-23 August 2007 (Figure 2.1). 
The National Hurricane Center Tropical Cyclone Report (Franklin, 2008) states that Dean 
formed from a tropical wave off the west coast of Africa on 11 August, became a tropical 
depression around 06 UTC on 13 August, and reached hurricane status early on 16 
August about 480 n mi east of Barbados. By 19 August, Hurricane Dean was a Category 
4 hurricane with a well-defined eyewall as seen by microwave and visible imagery 
(Figure 2.2). When Hurricane Dean made landfall on 21 August near the town of 
Majahual in the Yucatan Peninsula, Mexico, its central pressure was estimated at 905 mb 
with maximum sustained winds of 150 kt. 

 
 

 

 

Figure 2.1. The best track positions 
of Hurricane Dean from 13-23 
August 2007. Figure courtesy of 
Franklin (2008). 

 
 

 

 

 

Figure 2.2. Microwave imagery of 
Hurricane Dean (1336 UTC) is 
superimposed over GOES-E visible 
imagery (1315 UTC) on 19 Aug 2007.  
Image was taken from the NRL 
Tropical Cyclone webpage at 
http://www.nrlmry.navy.mil/tc_pages/

TC.html. 
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Hurricane 
Dean 

Figure 2.3. The longwave infrared satellite imagery is shown from GOES-East on 17 
August 2007 at 2245 UTC. Hurricane Dean is indicated. 

GOES-East infrared imagery on 17 August 2007 at 2245 UTC (Figure 2.3) shows the 
position of Hurricane Dean as well as significant amounts of convection over the 
CONUS, Cuba, Central America and northern South America. Purple-shaded regions 
define cloud top brightness temperature (BT) of -35oC or less.  

The time period covering Hurricane Dean is the foundation used for subsequent analysis 
of various tasks within this research effort. The validation of the CDO product using 
TRMM mission products is done over this period, as is the validation of the existing 
CNO product and the investigation into the Random Forest technique for CNO.  

3. Description of the CDO product (NCAR, NRL) 
The CDO algorithm developed at NCAR uses a fuzzy logic, data fusion technique on the 
outputs of three geostationary satellite-based algorithms that independently identify the 
location of deep convection (Kessinger et al. 2008) and is described here. 

3.1. Component, diagnostic algorithms of the CDO  

Convective clouds are identified via a fuzzy logic combination of three satellite-based 
algorithms called the Cloud Top Height (CTOP), the Cloud Classification (CC) and the 
Global Convective Diagnosis (GCD) to form the CDO product. The three algorithms are 
briefly described here and more fully in Donovan (2008). 

Cloud Classification (CC) product: Using a supervised learning methodology that was 
first applied to AVHRR data (Tag et al. 2000), a cloud classifier was developed at the 
NRL with further refinements made for application to GOES data (Bankert and Wade, 
2007; Bankert et al. 2008). A training data set is established through independent expert 
agreement of thousands of labeled 16x16 pixel samples. The classes used by the experts 
(and of relevance to this research) include cumulonimbus (Cb) and cirrostratus anvil 
(CsAn) for daytime classifications and a deep convection (DC) class at night. CsAn 
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represents relatively deep cirrostratus (Cs) near turrets in thunderstorms and is more 
closely related to deep convection than “garden variety” Cs. These four categories are 
inputs into the CDO product. 

Each training set sample is represented by a vector of characteristic features computed or 
extracted from each spectral channel in the GOES imager. Various training sets were 
established, differentiated by satellite (GOES-East or GOES-West), sea or land, and day 
or night. A 1-nearest neighbor algorithm is used within the classifier. The minimum 
distance in feature space between an unclassified sample presented to the classifier and 
the training data samples is found and the class label of the nearest-neighbor training 
sample is subsequently assigned to each pixel in the unclassified sample. 

Classifications of overlapping boxes (moving 16x16 pixel window) within each image 
are performed such that each image pixel is classified four times with the majority class 
assigned (ties broken randomly). Since each box is assigned a specific class, no 
“multiple”, “overlapping”, or “unknown” class is used. 

Cloud Top Height (CTOP) product:  The CTOP algorithm, developed at the NRL (Miller 
et al., 2005), combines geostationary longwave infrared (IR) channel data with the 
temperature profile data from the GFS model to estimate the heights of convective cloud 
tops over ocean and land surfaces during day- and night-time hours. For a given pixel 
location, the algorithm converts the satellite 11- μ m IR brightness temperature 
(approximate cloud top temperature) to a cloud top height (pressure level) using the GFS 
vertical profile.  The estimated pressure level is converted to height above sea level using 
the pressure vs. height relationship given by the standard atmosphere convention, which 
has been widely adopted for aviation use.  Note that this algorithm is intended for use 
over deep cloud systems, not for cloud tops lower than 15K ft. 

Global Convective Diagnosis (GCD) product: The GCD algorithm (Mosher 2002) 
computes, for a given pixel location, the brightness temperature (BT) difference between 
the water vapor channel (6.7- μ m) and the longwave IR channel (11- μ m). Deep, 
convective (i.e., optically thick) clouds that reach the tropopause are overlaid by dry, 
stratospheric air such that the BT of these two channels will be nearly equal at storm top. 
Within the GCD, near-zero differences (6.7- μ m BT minus 11- μ m BT) are associated 
with deep convection.  The GCD, as devised by Mosher (2002), used the GFS 4-layer 
lifted index to remove thermodynamically stable regions. However, for the CDO product, 
this step was removed to prevent undesirable discontinuities resulting from the large grid 
spacing (0.5 degrees) of the GFS model. 

3.2. CDO Methodology 

The CDO product is computed using a fuzzy logic, data fusion procedure (Figure 3.1) 
that ingests output from the three algorithms discussed above and is described further in 
Kessinger (2008). Output from each of the three algorithms is scaled by a stepwise linear 
“membership function” such that values that positively indicate the desired feature (i.e., 
convective clouds) are scaled to unity while values that do not indicate the desired feature 
are scaled to zero (see Figure 3.1b-d). The output from the membership function scaling 
is termed an “interest (or likelihood) field”. The interest outputs are weighted (GCD and 
CTOP use a weight of 1 while CC has a weight of 2) and summed to form the initial 
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CDO interest field with a maximum value of four during daytime and three at night due 
to the weighted contributions from the CC (Figure 3.1d). The final, binary CDO product 
is formed after the application of a threshold of 2.5 thus creating a binary indicator for the 
presence (=1) or absence (=0) of convection.  The threshold value ensures positive 
contributions from at least two algorithms, whether day or night. Within this report, the 
term “CDO interest field” refers to the interest field where values vary between zero and 
four while the term “CDO product” refers to the binary, thresholded CDO field that is 
either zero or one.  

The target audience for the CDO/CNO product suite is transoceanic, commercial aircraft 
that are flying at altitudes between 30-40 kft. Membership functions for the CDO 
component algorithms reflect this emphasis by the selection of categories for CC (Figure 
3.1d), the scaling of higher cloud top levels in CTOP (Figure 3.1b) and the emphasis on 
deep convection by the GCD (Figure 3.1c). As the TRMM validation shows in the next 
section, warm rain clouds are typically not detected by the CDO due to their lower cloud 
top heights and warmer brightness temperatures as compared to deep convective clouds.  
 

 
 

 d)c)b) 

a) 

Figure 3.1. In a), a schematic shows the fuzzy logic, data fusion process used to calculate 
the Convective Diagnosis Oceanic (CDO) product. The membership functions for b) 
CTOP, for c) GCD and for d) CC are shown. Courtesy of Kessinger et al. (2008) 

4. Verification of the CDO product using TRMM Observations (MIT LL) 

4.1. Introduction 

Following earlier methods used to intercompare the three independent convection 
diagnostic algorithms, this report describes how the CDO is validated against space-borne 
radar and lightning products from the TRMM satellite. A brief summary of what was 
learned in the previous intercomparisons is presented in Section 4.2. The methodology 
used to validate the performance of the CDO product and the verification results are 
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described in Sections 4.3 and 4.4, respectively. A summary and interpretation of the 
results follow in Section 4.5. 

4.2. Earlier Verification Methods 

Under sponsorship from the Federal Aviation Administration (FAA) Aviation Weather 
Research Program (AWRP), three intercomparisons of the convection diagnostic 
algorithms were performed over several years (Donovan et al, 2008). The duration, 
region of interest studied, and sophistication of each evaluation were subsequently 
improved. The first intercomparison entailed a study of the convection observed in the 
Gulf of Mexico for several hours during late morning and early afternoon for a single day 
in which convection was expected to develop. The algorithms were evaluated in their 
ability to detect large cloudy areas (>700 km2) whose cloud top temperatures were very 
low (<230°K). Observations from the Tropical Rainfall Measuring Mission (TRMM) 
Lightning Imager Sensor (LIS) were used to distinguish thunderstorm clouds from 
cumulonimbus clouds that did not contain lightning. 

Two regions were studied in the second intercomparison to compare algorithm 
performance over land (northern South America) and over the ocean (central Pacific 
Ocean). Similar to the first intercomparison, large cloudy areas containing cold cloud top 
temperatures (and presumed convective) were selected in the same manner for a duration 
of six days during the daylight hours. The TRMM Precipitation Radar (PR) data were 
introduced in this study in conjunction with LIS data to differentiate between cells 
presumed to be hazardous to aviation from non-hazardous cells and to evaluate the ability 
of each diagnostic algorithm to make such inferences. 

A third intercomparison was the most comprehensive study. A large portion of the 
western Pacific Ocean served as the domain of interest. The duration of this study lasted 
nearly two months. Unlike the previous studies, cells were studied during the day and 
night at 3-hour intervals to coincide with the update rate of the GOES-9 full-disk satellite 
scans. The TRMM algorithm for precipitation type was introduced as an additional 
criterion for hazard. 

Results from all three intercomparisons revealed that the diagnostic algorithms can 
achieve a 90% Probability of Detection (POD) rate of TRMM-verified hazardous cells 
when observed lightning is used as the criterion for hazardous status. However, each 
algorithm also showed a tendency to overestimate the presence of hazardous oceanic 
convection, a situation that could be improved through adjustments in thresholds for 
convection. These results are also likely due to shortcomings in the verification process. 
The horizontal resolution in the TRMM PR sampling and the modest time skew (~15 
min) allowed between the GOES products and TRMM observations can impact the 
results during storm evolution. The fuzzy logic blending technique used in the CDO 
algorithm should help to improve performance compared to the outputs from each of the 
satellite-based algorithms for convection detection. 

4.3. Verification Methodology of the CDO Interest 

Current CDO interest field verification is consistent with the methodology implemented 
in the last (third) intercomparison. Throughout this section, the use of “CDO” refers to 
the CDO interest field that has not been thresholded to form the binary CDO product. 
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That is, the TRMM satellite observations from the LIS and PR are used to make 
inferences of whether clouds with cold cloud top temperatures are hazardous or non-
hazardous to aviation. This designation is then compared with the CDO detection results 
to determine the algorithms’ ability to discriminate hazardous convection. Several 
adjustments were made, however, to the rule set used in determining which cloud regions 
were selected for study and to the criteria used in determining whether a cloud is 
hazardous. These adjustments were deemed necessary because in the previous 
intercomparisons, large cloudy areas were treated mainly as a single event and the 
convection detection algorithms were scored accordingly. TRMM PR observations of 
these events often revealed the presence of discrete cores that depict regions of greatest 
updraft and turbulence (i.e., hazard) within a larger cloud region. Since these events were 
treated as a whole, the diagnostic algorithms were not penalized if their detected locations 
of convection did not match the hazard areas derived from TRMM data and consequently 
the amount of detection overestimation was not considered. Additionally, cloudy areas 
that showed no evidence of hazard by TRMM and were not diagnosed as convection by 
the CDO were not recorded in the evaluations, thereby eliminating an important scoring 
measurement, i.e., corrective negative. The geographical domain studied, the rule set for 
case selection, the criteria for hazard and the scoring rules were revised prior to the CDO 
verification. 

The domain of interest selected to study the CDO interest performance consists of a large 
region encompassing the Gulf of Mexico, the Caribbean, and portions of the Atlantic and 
Pacific oceans. The red rectangle in Figure 4.1 illustrates the geographical location 
studied. The domain extends over 70 degrees of longitude from 30° W to 100° W and 
over 50 degrees of latitude from 35° N to −15° S. The large domain allows an evaluation 
of the CDO algorithm to detect continental convection over different land masses such as 
northern South America, southeastern United States and the Caribbean Islands. The 
domain also allows evaluation of maritime convection observed within large oceanic 
regions such as the Gulf of Mexico and portions of the western and central Atlantic 
Ocean. These regions were studied for a convectively active seven day period from 12-18 
August 2007. The CDO interest data and TRMM data from all orbital overpasses within 
the domain were archived and translated onto a common grid with a spatial resolution of 
6 km. 

 

Figure 4.1. The red rectangle 
identifies the domain of interest 
where the verification of the 
CDO interest field was 
performed for the period 12-18 
August 2007. The region of 
interest extends 70 degrees of 
longitude and 50 degrees of 
latitude. 
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Cases were selected for analysis if the visual inspection of the TRMM Visible and 
Infrared Radiometer (VIRS) observations revealed large cloudy regions (>216 km2 or 6 
grid bins) associated with contiguous cold cloud top temperatures (<−30°C) within the 
PR swath width (~243 km) and the TRMM and CDO interest data (based on GOES-12 
satellite data) were time-coincident within 15 minutes. Special consideration was given to 
the temporal matching between the data sets, given the large size of the primary domain 
of interest. Each time-registered scan line of the TRMM orbital swath was compared to 
the estimated time of each scan line of the GOES-12 Northern Hemisphere extended 
sector at the latitudinal location being observed. All regions within the domain that were 
not time-coincident were excluded from the analysis. The temperature threshold was 
chosen to limit the evaluation to vertically developed clouds whose tops have reached 
high altitudes because the target audience of the CDO interest is for transoceanic 
commercial aircraft flying at altitudes between 30-40 kft, and because, on average, 
deeper clouds are characterized by stronger updrafts and generally more hazardous 
conditions. 

For any cloudy region selected for analysis, the TRMM PR and LIS data were reviewed 
to determine whether conditions presumed hazardous to aviation exist. The PR 
reflectivity serves as an indicator of the stage of vertical development within deep 
convection and the LIS detects lightning activity that results from a vigorous updraft and 
an active mixed phase region of convection. 

Three criteria were applied to each selected cloudy region to determine the presence of 
hazardous conditions: 

1) The radar reflectivity at 5 km altitude (MSL), and the lower portion of the mixed phase 
region of convection, is >30 dBZ.  

2) At least one lightning flash is detected in the cell of interest. 

3) The NASA TRMM precipitation type algorithm classified the rainfall as ‘convective 
certain’ in regions where the IR brightness temperature <−3°C. 

If any combination of these three thresholds is exceeded, the hazard flag is raised for 
purposes of validation. If threshold (1) or (2) is exceeded the cell is considered 
hazardous; but if threshold (3) is the lone indicator of hazard, the cell is flagged as 
hazardous only if 5 or more grid bins (180 km2 area) of convective rain are observed. To 
facilitate the CDO evaluation, a TRMM hazard product which identifies any combination 
of the criteria listed above is generated at the same 6 km spatial resolution and compared 
with the CDO interest data. For instances when the aerial extent of the cell’s cold cloud 
top temperature area (<−30 °C) of interest is spatially large (~ >2,500 km2), the TRMM 
derived hazard product and the reflectivity observed at the 5 km altitude (CAPPI) are 
used to distinguish the cell as single or multiple events for purposes of scoring the CDO. 

The scoring rules were also modified slightly. Large cloudy areas may be evaluated as a 
single or multiple event and correct negatives were recorded in order to compute 
additional categorical statistics, such as Accuracy, Bias, and Probability of False 
Detection (POFD), not computed in previous intercomparisons. In order to compute these 
statistics, a contingency table is created to record the frequency of ‘yes’  
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Table 4.1. CDO interest verification contingency table which shows the elements (in 
bold) necessary for computing several categorical statistics. The categories of ‘yes’ 
and ‘no’ TRMM hazard observed and the corresponding ‘yes’ and ‘no’ CDO 
detection are recorded for all cells selected for analysis. 

Contingency Table 

TRMM Hazard Observed   

yes no total 

yes hit false alarm detect yes 
CDO Detection 

no miss correct negative detect no 

 total hazard yes hazard no Total 

and ‘no’ CDO detections (using maximum interest value) against all ‘yes’ and ‘no’ 
TRMM hazard observations for each cloud cell that meets the selection criteria described 
above. Spatial tolerances between the CDO detection and TRMM hazard locations were 
allowed due to the temporal differences between the two data sets. Table 4.1 illustrates 
the elements within the contingency table that were recorded during the evaluation and is 
useful to identify the types of detection errors being made. 

The table elements are defined as follows: 

hit – TRMM observed hazard and CDO interest  >2.5 

miss – TRMM observed hazard and CDO interest < 2.5 

false alarm – TRMM observed no hazard and CDO interest > 2.5 

correct negative – TRMM observed no hazard and CDO interest < 2.5 

A perfect detection system would produce only hits and correct negatives, and no misses 
or false alarms. The statistics by category computed from these elements are presented in 
Section 4.4. 

Figure 4.2 shows an example of the product analysis display used to evaluate visually the 
TRMM and CDO interest data for oceanic convection observed off the northeastern 
South American coastline at 14:26:44 UTC on 12 August 2007. The TRMM IR (Figure 
4.2a) and PR reflectivity CAPPI at 5 km altitude (Figure 4.2b) are used to select cases for 
study and to identify single or multiple events within large cloudy regions. Note that 
generally the radar reflective areas are spatially well correlated with the IR areas, but are 
also generally smaller, in keeping with general experience. The radar is depicting the 
precipitating cores of convection, but in some cases is not present at all. The brighter 
white colors in Figure 4.2a represent IR cloud top temperatures <−30 °C. The derived 
TRMM hazard product (Figure 4.2c) identifies hazard locations of significant elevated 
reflectivity (green), convective rain (blue) and lightning (red; none observed). The CDO 
interest  field (Figure 4.2d) shows values ranging from 0-4. The light tan and red color 
keys represent CDO interest values >2.5 and designated regions of convection. 
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Figure 4.2. Four-panel analysis display showing the (a) TRMM IR (°C), (b) TRMM radar 
reflectivity  (dBZ) at 5 km altitude, (c) TRMM derived hazard product, and (d) CDO 
interest field of oceanic convective clouds observed northeast of the South American 
coastline on 12 August 2007 at 14:26:44 UTC. The TRMM derived product denotes 
regions where our criteria for hazard was observed based on the following designations: 
T – convective rain, Z – reflectivity >30 dBZ at 5 km altitude, L – lightning, or ZT, LT, 
LZ, and LZT – combination of the hazard classes. An interest threshold of 2.5 is applied 
to the CDO interest field to indicate the presence of convective clouds. Distinctions 
between hazardous and non-hazardous cloud regions are indicated by red and blue 
ellipsoids, respectively. The TRMM PR swath width is 243 km. 

The distinction made between the hazardous and non-hazardous cloud regions within the 
PR swath width (two white parallel lines) are shown as red and blue ellipsoids, 
respectively. Note the discrete reflectivity cores observed in the 5 km PR CAPPI (Figure 
4.2b) are used to differentiate between single (Figure 4.2d, cell a) or multiple events 
(Figure 4.2d, cells f-i) in the two large cloudy regions. In this example, the CDO 
verification would yield 4 hits (a,f,g,k), 0 misses, 2 false alarms (e,h), and 8 correct 
negatives (b,c,d,i,j,l,m,n). 

4.4. CDO Verification Results 

Within the seven day period between 12-18 August 2007, 1,817 cells met the selection 
criteria for study and the frequency of ‘yes’ and ‘no’ CDO detection and TRMM 
observed hazard elements were recorded to complete the contingency table shown in 
Table 4.1. The elements within the Table were then used to compute several category 
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statistic scores such as POD, False Alarm Ratio (FAR), POFD, Accuracy, Bias, and 
Critical Success Index (CSI) to determine the performance of the CDO algorithm. The 
formula to compute each performance statistic and a brief definition are provided below. 

POD = hits / (hits + misses) 

(The fraction of the ‘hazard yes’ events correctly detected) 

FAR = false alarms / (hits + false alarms) 

 (The fraction of the ‘detect yes’ events found to contain ‘no’ hazard) 

POFD = false alarms / (correct negatives + false alarms) 

 (The fraction of the ‘hazard no’ events incorrectly detected as ‘yes’) 

Accuracy = (hits + correct negatives) / total 

 (The fraction of the events correctly detected) 

Bias = (hits + false alarms) / (hits + misses) 

(The detection frequency of ‘detect yes’ events compared to the observed 
frequency of ‘hazard yes’ events) 

CSI = hits / (hits + misses + false alarms) 

(A measure of how well the detected ‘hazard yes’ events correspond to the 
observed ‘yes’ hazard events) 

The element total and CDO statistical scores are provided in Table 4.2. The results of the 
verification were computed for all cells selected for analysis and further broken down 
into multiple categories (normalized) to compare CDO performance during the day and 
night, over ocean and land, for small and large cell spatial area, and for cells with and 
without observed lightning. 

Regarding the ‘all’ category performance results, the CDO performed marginally well 
with a POD of 0.72, FAR of 0.26 and a CSI score of 0.58. The Bias score (0.98) indicates 
the CDO algorithm shows no tendency to under- or over-detect convective clouds. When 
comparing results for the other categories, there is no substantial difference in 
performance between the cells located over the ocean and over land. However, the CDO 
shows a considerable improvement in performance (POD, POFD, Bias and CSI) for cells 
observed during the daylight hours from those observed at night. Similarly, the CDO 
performance is much higher for the detection of large cells than for small cells. The last 
two categories delineate performance for all analyzed cells with or without observed 
lightning. The results indicate the CDO is much better at classifying clouds as convective 
if they contain lightning. The false alarm category and the remaining statistics cannot be 
tabulated for the lightning category because the CDO algorithm is not designed to detect 
this feature. The results in Table 4.2 are consistent with previous intercomparisons of the 
convection detection algorithms. 

It should be noted that a small subset of cases (50, or 2.7% of all events) that were 
analyzed but excluded from the CDO verification statistics because they did not meet all 
the required criteria during the case selection process. In all instances, these cells were  
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Table 4.2. Detection performance statistics of the CDO algorithm for all hazardous 
and non-hazardous cells analyzed for the seven day period of 12-18 August 2007. 
The abbreviated column titles represent hits (H), misses (M), false alarms (FA), 
correct negatives (C Neg) and Accuracy (Acc). 

CDO Verification Results 

Category H M FA C Neg POD FAR POFD Acc Bias CSI 

all 613 237 216 751 0.72 0.26 0.22 0.75 0.98 0.58 

 

day 502 112 172 1273 0.82 0.26 0.26 0.78 1.10 0.64 

night 111 125 44 544 0.47 0.28 0.14 0.69 0.66 0.40 

 

ocean 314 134 109 1036 0.70 0.26 0.19 0.77 0.94 0.56 

land 299 103 107 781 0.74 0.26 0.28 0.73 1.01 0.59 

 

small 143 124 51 701 0.54 0.26 0.12 0.75 0.73 0.45 

large 470 113 165 1116 0.81 0.26 0.31 0.75 1.09 0.63 

 

lightning 238 51 − 289 0.82 − − − − − 

no lightning 375 186 216 1528 0.67 0.37 0.22 0.74 1.05 0.48 

verified by TRMM to be hazardous by one or all hazard criterions but the size (> 210 km2 
or 6 grid bins) and/or minimum IR cloud top temperature (< −30 °C) thresholds were not 
exceeded. Since these cells were likely in their early developmental stage, the CDO 
algorithm was given an allowance that it would likely not perform well or even ‘see’ 
these events owing to the fact that the time skew between the TRMM and GOES-12 
satellite observations can be as great as 15 minutes. Owing to their compact nature, the 
hazard to aviation presented by these minority elements is deemed lower than normal. 

The results in Table 4.2 were tabulated using a CDO interest detection threshold value of 
2.5. In order to determine if the algorithm threshold is properly calibrated to achieve the 
best performance score, a sensitivity test was performed by computing the category 
statistics over a range of threshold values. The POD and POFD scores are then used to 
create a Relative Operating Characteristic (ROC) curve. The ROC measures the ability of 
the diagnostic algorithm to discriminate between convective and non-convective clouds. 
Figure 4.3 contains a plot of the ROC curve achieved by the CDO algorithm as the  
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Maximum 
Skill 

Minimum 
Skill 

Figure 4.3. A plot of the False Alarm Rate (POFD) vs. the Probability of Detection 
(POD) achieved by the CDO algorithm for an interest threshold interval of 1.5–3.5. The 
interest value used to acquire the performance results shown along the curve are labeled 
next to each data point. The area under the curve and above the diagonal dashed line is 
often regarded as a score with the dashed line corresponding to the algorithm having no 
skill at discriminating between convective and non-convective clouds. 

interest detection threshold value is adjusted from 1.5–3.5 at 0.1 interest intervals. 
Generally, the greater the area under the curve and above the dashed line is representative 
of higher algorithm performance. The curve endpoint interest threshold values of 1.5 and 
3.5 indicate very poor algorithm performance is realized and yield a high POFD and low 
POD, respectively. As the threshold value is increased from 1.5, both the POFD and POD 
lower. The ROC curve in Figure 4.3 shows that the current interest threshold value (2.5) 
applied in the CDO algorithm yields the best performance. Categorical statistic scores 
were also computed for the same interest threshold range of 1.5-3.5 at intervals of 0.1. 
Figure 4.4 illustrates the CDO performance over this range for the same scoring metrics 
presented in Table 4.2. The results show that an interest threshold value of 2.5 produces 
the best CDO performance by achieving the highest Accuracy (0.75) and CSI (0.58) 
while maintaining the most neutral Bias (0.98). These results are consistent with the ROC 
curve results shown in Figure 4.3 and lend further confidence in the interest threshold 
currently used in the CDO algorithm. 

An example of the CDO performance for mature Hurricane Dean located south of the 
Dominican Republic on 18 August 2007 at 13:44:11 UTC is illustrated in the four-panel 
analysis display in Figure 4.5. The TRMM IR (Figure 4.5a) and radar reflectivity at 5 km 
altitude (Figure 4.5b) show a broad area of very cold (<−60 °C) IR brightness   
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Figure 4.4.  Plot of 
the CDO interest 
performance for 
several statistical 
categories over a 
range of interest 
threshold values of 
1.5-3.5 at 0.1 
intervals. The 
horizontal dashed 
line represents a 
perfect score for 
POD, CSI, and 
Accuracy and a 
neutral Bias score.  

 

temperatures and significant rainfall, respectively. The TRMM derived hazard product 
(Figure 4.5c) shows substantial regions of hazard that coincide with the reflectivity 
observed at 5 km and additionally shows locations of hazard associated with LIS 
observed lightning (maroon and red colors) in the northeast eyewall and within the outer 
spiral bands. The CDO interest field (Figure 4.5d) does a very good job classifying a 
majority of this system as deep convection (regions > 2.5) with the higher interest regions 
(maroon and red colors) matching well with the areas of coldest IR temperatures and 
strongest elevated reflectivity. 

A cross sectional view of the TRMM radar reflectivity observed along the black solid line 
segment with end points A and B in each sub-panel plot is shown in Figure 4.6 along 
with the corresponding CDO interest values retrieved along this same path from the CDO 
grid in Figure 4.5d. The CDO interest values (shown at the top of the figure) are reported 
in color coded intervals to represent weak interest (blue – CDO<1.5), moderate interest 
(green – CDO>1.5 & <2.5), and high interest or detection of deep convection (red – 
CDO>2.5). It is interesting to note the most intense reflectivity cores, denoting the 
greatest vertical velocities within the hurricane, are being correctly classified as 
convection by the CDO. Even the small eye located at a range of ~520 km along the 
segment path, is depicted as a region of low interest by the CDO algorithm. The CDO 
values displayed at the top of Figure 4.6 are not spatially coincident and are shifted 
slightly left from the reflectivity cores observed by TRMM because GOES-12 scanned 
this region approximately 10 minutes after the TRMM orbit overpass. This time skew is 
allowed for during the CDO evaluation and the algorithm would not be penalized. 
Conversely, the CDO slightly overestimates the convection associated with the spiral 
band located at a range of 900 km along the segment path. The reflectivity core and 
derived hazard (Figure 4.5b,c) within this band is narrower than the CDO high interest 
region (Figure 4.5d). 
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Figure 4.5. An example of the same four-panel display of products as shown in Figure 
4.2 for convection associated with Hurricane Dean on 18 August 2007 at 13:44:11 UTC. 
A cross sectional view of the radar reflectivity and CDO interest values along the black 
line segment labeled A-B in (d) is illustrated in Figure 4.6. The TRMM PR swath width is 
243 km. 

Figure 4.6 A cross 
section of the radar 
reflectivity (dBZ) 
associated with 
Hurricane Dean and 
observed by the TRMM 
PR along the A-B line 
segment shown in 
Figure 4.5d. The 
corresponding CDO 
interest values along 
this path are converted 
to color coded 
intervals defined in the 
legend box and 
represent regions of 
weak (blue), moderate 

(green) and strong (red) likelihood of convection. TRMM reflectivity >30 dBZ at the 5 km 
altitude is one criterion used to denote hazard. 
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A second example illustrating good CDO performance on several small cells located in 
the eastern Pacific Ocean west of Costa Rica is provided in the product plan-view 
analysis display in Figure 4.7 and the radar reflectivity cross section in Figure 4.8. The 
TRMM LIS did not detect lightning in these cells but the PR did detect significant 
discrete elevated reflectivity cores (Figure 4.7b) along with regions of convective rain 
signatures (Figure 4.7c). The CDO algorithm results shown in Figure 4.7d are mainly 
correct in designating all or a portion of these cloudy areas as convection. A comparison 
of the CDO interest values and the reflectivity cross-section along the A-B line segment 
is demonstrated in Figure 4.8. The taller and more developed cells centered at ranges 100 
and 400 km along the segment path are denoted as convection by the CDO as is the 
shorter cell (likely in an early development stage) centered at 260 km. The CDO fails to 
detect the cell centered at 175 km but would not be scored as a ‘miss’ due to a time skew 
of 12 minutes between TRMM and GOES-12. This cell is classified as convection 
(interest >2.5) by the CDO in Figure 4.7d but the placement of the detection is shifted 
slightly north and west of the A-B line segment, likely due to the cell extrapolation that 
has occurred within the 12 minutes. Also, as noted in the previous example, the time 
skew between the satellite observations is the reason why the CDO interest values along 
the line segment A-B do match spatially (shifted left) with the reflectivity cores in Figure 
4.8. 

 
Figure 4.7. A second example of the same four-panel display of products as shown in 
Figure 4.2 for small cells located in the eastern Pacific Ocean on 16 August 2007 at 
15:36:22 UTC. A cross sectional view of the radar reflectivity and CDO interest values 
along the black line segment labeled A-B in (d) is illustrated in Figure 4.8. The TRMM 
PR swath width is 243 km. 
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Figure 4.8. A 
cross section of 
the radar 

reflectivity 
(dBZ) for 
several cells 
observed by the 
TRMM PR 
along the A-B 
line segment 
shown in 
Figure 4.7d. 
The corre-
sponding CDO 
interest values 
along the same 
path are shown 
at the top. 

 

 

Figure 4.9 shows a third example of the TRMM products and CDO interest field for 
small and large cells observed over Cuba on 17 August 2008 at 22:54:09 UTC. Most of 
the smaller cells located over western Cuba contain narrow but well developed 
reflectivity cores and lightning (Figure 4.9c). The CDO interest field correctly designates 
these cells as convection. Within the two large cells centered over the island, small areas 
of weak elevated reflectivity (<25 dBZ) are observed and lightning is observed only 
within the southern portion of the large cell over eastern Cuba. The CDO in Figure 4.9d 
appears to overestimate the amount of convection (interest >2.5) in these two large cells, 
particularly the cell over central Cuba. A cross sectional view of the radar reflectivity 
along the line segment A-B is shown in Figure 4.10 and helps to explain why the CDO 
generated false detections. As mentioned above, the narrow and tall cell centered at 100 
km range along the segment path is classified as hazardous by TRMM and detected as 
convection by the CDO. In the two large cells centered at range 270 and 480 km, most of 
the reflectivity is weak and located above the altitude of the mixed phase region and the 
altitude used to judge hazardous convection (5 km). The radar cross section gives the 
appearance that these cells were fully developed in the past but are now in the decaying 
stage of their life cycle. As a result, the CDO algorithm suffers from having no 
knowledge of cell evolution.  It should also be pointed out that it is not known if elevated 
reflectivity of this magnitude (20-25 dBZ) produces turbulence or icing conditions 
hazardous to aviation. In the present study, these conditions are regarded as non-
hazardous. 

4.5. Summary and Interpretation 

The verification results of the CDO algorithm using TRMM satellite radar and lightning 
observations indicate that a decent percentage (72%) of TRMM-verified hazardous cells  
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Figure 4.9. A third example of the same four-panel display of products shown in Figure 
4.2  for cells located over Cuba on 17 August 2007 at 22:54:09 UTC. A cross sectional 
view of the radar reflectivity and CDO interest values along the black line segment 
labeled A-B in (d) is illustrated in Figure 4.10. The TRMM PR swath width is 243 km. 

  

Figure 4.10. A 
cross section of 
the radar 

reflectivity 
(dBZ) for 
several cells 
observed by the 
TRMM PR 
along the A-B 
line segment 
shown in 
Figure 4.9d. 
The corres-
ponding CDO 
interest values 
along the same 
path are shown 
at the top. 
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were classified as convection by the CDO. The FAR and CSI results were 26% and 58%, 
respectively. Given that the case selection criteria and verification methodology have 
changed significantly to incorporate smaller-sized cells and to measure algorithm skill at 
identifying the greatest hazard region within the cloud instead of treating the cell as a 
whole event, the composite product approach has demonstrated that the CDO algorithm 
is more skillful at identifying convection than the performance shown individually from 
the three convection detection algorithms in previous intercomparison studies (Donovan 
et al, 2008). The verification results have also given confidence that the current interest 
threshold (2.5) applied in the CDO algorithm produces the best performance with the 
least amount of bias (Figure 4.3 and Figure 4.4). 

However, perfect algorithm detection in the presence of both imperfect algorithms and 
imperfect verification cannot be expected. The horizontal resolution of the TRMM PR 
(~5 km) can smear narrow reflectivity cores, and the time skew (~15 min) between 
geostationary satellite products and the TRMM observations can allow storm evolution to 
negatively impact the verification process. The analysis has shown a fundamental 
limitation in using satellite visible and IR information alone to make proper inferences 
about the internal characteristics of deep convective cells, specifically the hazards 
associated with updraft strength and turbulence. The CDO algorithm, based on the rather 
coarse IR features of the cloud veneer, typically detects the highest interest values near 
the cloud center and/or in regions containing the coldest cloud top temperatures as 
evident in Figure 4.2, Figure 4.5, and Figure 4.7. The TRMM observations, however, 
with their more detailed depiction of internal cloud structure, often exhibit the greatest 
hazard just as likely near the cloud cell edge and in regions warmer than the minimum 
cloud top temperature. In addition, cloud cells exhibiting very cold cloud top 
temperatures do not also equate to hazardous characteristics (Figure 4.9). This 
unfavorable result can be traced to a simple cause: a large number of oceanic 
cumulonimbus clouds attain high altitude (>40 kft) but lack a strong updraft (and 
attendant radar reflectivity aloft and lightning) (Donovan et al, 2008). 

5. GOES Cloud Classifier Update (NRL, NCAR) 
A long term goal for the NRL Cloud Classifier algorithm is to have the capability to run 
the algorithm within the computing environments of the Aviation Weather Center (AWC) 
and/or the National Weather Service (NWS). These agencies do not have access to 
satellite imagery stored in Terascan Data Format (TDF) but instead rely on the GOES 
Ingest and NOAAPORT Interface (GINI) and/or the McIDAS formats. A summary of 
efforts to achieve format independence is presented in Sections 5.2 and 5.3.  

A secondary goal has been to increase the computational speed of the algorithm, thus 
allowing larger domains to be analyzed. Work was presented in last year’s annual report 
(Kessinger et al, 2007) that summarized the effort to incorporate a reduced training set 
into the algorithm to reduce computational time. Testing of the reduced training set is 
underway as of this writing. 

A third goal for the Cloud Classifier algorithm has been to run the algorithm using 
imagery from the MTSAT satellite. Preliminary results are shown in Section 5.4. This 
success puts the project in good form for expansion of the CDO/CNO products into the 
Pacific region, as planned for Year 3 of this proposal.  

26 



15 November 2008 

A general (not project specific) experiment to validate the Cloud Classifier through a 
comparison of outputs with an algorithm using a very different methodology is presented 
in Section 5.5. Discussion will include relevance of validation results to the CDO 
algorithm.  

5.1.  Background 

As described in Section 3.1, the GOES Cloud Classifier (CC; Tag et al, 2000; Bankert 
and Wade, 2007) employs a 1-nearest neighbor algorithm to classify a specifically-sized 
sample (within an image) with the same cloud class as the training sample at the closest 
Euclidean distance in feature space. The characteristic features, extracted from the GOES 
channel data, define the feature space dimensions and are used to represent each training 
and testing sample. All pixels in a given test sample are assigned the same class.  The 
classified sample boxes, in a given image, overlap each other such that each individual 
pixel is classified four times with the final classification determined by simple majority 
(ties broken randomly). Classes of interest for the CDO algorithm include cumulonimbus 
(Cb), high thick clouds associated with deep convection (CsAn), and cirrostratus (Cs) as 
classified in daytime imagery and deep convection (DC) at night. 

5.2.  Data format independence 

The GOES CC algorithm was originally developed at the NRL where GOES data arrives 
and is processed using the Terascan environment.  The classifier was, therefore, 
necessarily developed using the appropriate Terascan libraries and subroutines.  
Redesigning the classifier to run on any data format (Terascan, McIDAS, IDL, GINI, etc) 
has been completed to provide any potential user with a cloud classifier that only requires 
development of a “wrapper” to convert the data sets (in any initial data format) to binary 
files and then converting the classifier’s binary output file to the data format of choice.  
The required input data sets and their associated properties that are used as input to the 
CC for GOES-11 and GOES-12 data are listed in Table 5.1. 

After presenting these data sets to the classifier as binary data files, the classifier is run 
and the output file is binary with data type of byte.  The dimensions (lines and samples) 
of both input and output data sets also need to be presented to the classifier.  These 
dimensions along with the size of the domain determine the resolution of the data sets 
(input and output).  An example of classifier outputs (displaying classes relative to the 
CDO) along with the images for the visible and longwave infrared (10.7 µm) channels 
are provided in Figure 5.1.  There is good agreement between the TDF-dependent 
classifier output and the output from the classifier running binary data (original TDF 
data).  The resolutions of the input (and output) data sets are very similar.  Inputting 
binary data sets at or near 1-km resolution allows the classifier to produce classifications 
closer to the original design of the TDF-dependent classifier. 
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Table 5.1. Required input data sets (and their associated properties) for the GOES 
cloud classifier. 

Data Set Data Type Units 

Visible channel (0.65 µm) byte albedo*100 

Near-IR chanel (3.9 µm) float degrees C 

Water vapor channel (6.5 (GOES-12) or 6.7 µm 
(GOES-11)) 

float degrees C 

Longwave IR channel (10.7 µm) float degrees C 

GOES-11 IR channel (12.0 µm) float degrees C 

GOES-12 IR channel (13.3 µm) float degrees C 

Land/Sea mask byte land=1; water=0 

Latitude float degrees (-90.0 to +90.0) 

Longitude float degrees (-180.0 to +180.0) 

Solar zenith angle float degrees (angle) 
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a) 

 

b) 

Figure 5.1. GOES-12 imagery and classification is shown over eastern U.S. and Gulf of 
Mexico for 13 June 2008 at 1615 UTC and includes: (a) visible channel and (b) 
longwave IR channel. 
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c) 

d) 

Figure 5.1,  con’t. GOES-12 imagery and classification is shown over eastern U.S. and 
Gulf of Mexico for 13 June 2008 at 1615 UTC and includes: (c) TDF-dependent 
classifier output (CDO classes only) and (d) data format independent classifier output 
(CDO classes only). 
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5.3.  GINI data format 

As stated above, a long term goal has been to port the CC algorithm to the NWS and the 
AWC for inclusion in thunderstorm nowcasting efforts as applied at the national and 
international levels. Because the algorithm was developed within the Terascan 
infrastructure, which is not available within NOAA, a re-engineering of the algorithm to 
remove data format dependencies was necessary to achieve this goal. The first 
technology transfer of the CC into the Advanced Weather Information Processing System 
(AWIPS) is now underway at the NWS Weather Forecasting Office (WFO) and the 
Center Weather Service Unit (CWSU) at Dallas, TX. The NWS funded the effort to 
ingest GINI format data while this ROSES grant funded the effort for format 
independence. 

The NOAA agencies use the GINI format.  The GINI imagery products (all channels) are 
broadcast as image (pixel) data and must be converted to the data units described in Table 
5.1 prior to input into the CC.  Further, the GINI data are only available over specific 
domains (which can have varying spatial resolutions) so its use within the CC is limited 
primarily to CONUS applications. Calculations for the land/sea mask, latitude/longitude 
and the solar zenith angle are not included in the GINI data and must be completed before 
input into the CC. An example classifier output (at the same date/time as Figure 5.1), 
using GINI data, is presented in Figure 5.2. 

 
Figure 5.2.  Classifier output (CDO classes only) using format-independent data (in this 
case GINI format) for the imagery in Figure 5.1. 
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Figure 5.3. Preliminary results are shown from the CC algorithm using MTSAT-1R 
imagery as input for October 20, 2008 at 01:30 UTC.  

5.4. Japanese Multi-Functional Transport Satellite (MTSAT-1R) imagery 

To expand the oceanic domain over which the CDO/CNO system can be computed to the 
western Pacific Ocean, use of the Japanese MTSAT-1R is needed. The MTSAT-1R has 
the necessary channels to compute the CTOP and the GCD components of the CDO. To 
utilize the CC algorithm, a retraining and tuning exercise was required and initial results 
have been produced. The CC algorithm was initially run on MTSAT-1R imagery in the 
western Pacific with preliminary results shown in Figure 5.3 for the corresponding visible 
and infrared imagery (Figure 5.4). While these results appear consistent with results from 
GOES imagery, further work is required to validate the results. This effort will be 
undertaken in Year 3 of this proposal. 

5.5. Validation experiment 

Given the available data sets, a cloud classifier algorithm validation experiment was 
performed. The experiment and some results are discussed here as they are of interest to 
this project, given the CC usage within the CDO. With a lack of ground truth validation 
for each, output from two independently-developed GOES-11 cloud classifiers, one using 
implicit physics (used here within the CDO) and the other using explicit physics, are 
compared and analyzed.  Results were presented in Bankert et al, (2008). Pixel-by-pixel 
comparisons, from a year of hourly daytime data in the NE Pacific (Figure 5.5), are 
analyzed.  A high number of similar classifications for a given cloud class would bolster 
confidence in the individual classifier’s output.  While neither classifier can claim to be 
“ground truth”, agreement between both classifiers – developed through very different 
methods – can give a user increased confidence in each classifier.  Disagreements will  
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a) 

b) 

Figure 5.4. MTSAT-1 a) visible and b) longwave infrared imagery used as input into the 
CC algorithm (results shown in Figure 5.3) for October 20, 2008 at 01:30 UTC.  
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Figure 5.5. Area used for pixel-by-pixel 
comparison over a 1-yr period (GOES-
11 visible image). 

 
 

 

 

confirm or expose problem areas or limitations in one or both classifiers.  Analysis of the 
disagreements may lead to classifier refinements or post-processing to improve the 
current classifications. 

The GOES CC employs a supervised learning methodology (implicit physics) and is 
described in Sections 3.1 and 5.1 of the report.  The daytime classes are listed in Table 
5.2.  For this experiment, pixels classified as Ground Snow, Haze, and Sunglint are 
ignored in the comparison analysis. 

Table 5.2. Classes used in the NRL GOES cloud classifier (CC; “implicit physics”). 

Stratus (St) 
Stratocumulus (Sc) 
Cumulus (Cu) 
Altocumulus (Ac) 
Altostratus (As) 
Cirrus (Ci) 
Cirrocumulus (Cc) 
Cirrostratus (Cs) 
Cumulus Congestus (CuC) 
Cumulonimbus (Cb) 
CsAn  (Cs near turret in thunderstorm; more closely 
related to deep convection than “garden variety” Cs) 
Clear (Clr) 
Ground Snow (Sn) 
Haze (Hz) 
Sunglint (Sg) 

The “explicit physics” algorithm (CT) employed for this study is based on the works of 
Pavolonis, et al. (2005) and Pavolonis and Heidinger (2004).  Using a series of 
thresholding and other thermal contrast, visible contrast, and spatial uniformity tests on 
the visible (0.65 µm), near-IR (3.9 µm), and longwave IR (11 µm) channels, each pixel is 
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assigned to one of the cloud types listed in Table 5.3.     Partly cloudy types are ignored 
for this study. 

Table 5.3. Cloud types used in “explicit physics” classification (CT) algorithm. 

Clear (Clr) 
Partly cloudy 
Liquid water (Liq) 
Supercooled water  or Mixed phase (Mix) 
Glaciated - opaque ice (Glac) 
Cirrus (Ci) 
Cloud overlap (OL) 

A cloud mask algorithm first determines if a pixel is clear or cloud.  For all pixels 
classified as cloud, the 11 µm channel brightness temperature is determined and an OL 
test and Ci test are applied.  If both of these tests fail, the appropriate (based on 11 µm 
channel brightness temperature) cloud phase tests for liquid water, supercooled water or 
mixed phase, and glaciated (opaque ice) clouds are applied and the pixel’s cloud type is 
assigned. 

Hourly daytime data for each of the classifiers were collected over a one year time period 
(10/06 -10/07). In order to get a better one-to-one analysis when comparing the output of 
the two algorithms, the CC classes are combined to best match the CT cloud types.  This 
clustering of classes is summarized in Table 5.4.  Note there is no corresponding 
overlapping cloud class in the CC algorithm. 

Pixel-by-pixel comparisons done over the entire year are summarized in the cloud 
class/type matrices displayed in Table 5.5 and Table 5.6.  Table 5.5 gives the percent 
distribution within a specific CT type of how that cloud type was matched (pixel-by-
pixel) with CC cloud classes (as described in Table 5.4).  For example (marked in red), 
57.2% of the pixels classified as mixed phase or supercooled water by the CT algorithm 
were classified as one of the liquid cloud classes by the CC algorithm.  Table 5.6 gives 
the percent distribution within a CC class of how that cloud class was matched (pixel-by-
pixel) with CT cloud types.  Looking at the same table element described in the example 
above, 19.7% of the pixels classified as liquid cloud by the CC algorithm were classified 
as mixed phase or supercooled water by the CT algorithm. 

There is much agreement between the two algorithms, especially in terms of clear pixels 
and liquid water cloud pixels.  Confidence is increased in those cases where algorithms 
agree on the classifications.  In addition, some of the disagreements may be a result of the 
different original sets of classes/types used as opposed to one (or both) of the classifiers 
being in actual error.   

Many of the classifier disagreements are a result of the lack of an overlapping cloud class 
in the CC algorithm and/or missed OL classifications in the CT algorithm.  As one 
example, since the CC algorithm does not have an OL class, actual OL pixels are 
classified as As or Ac with signals from both low cloud and overlying Ci being used to 
give a mixed phase classification.  An example of this classification mixture can be seen  

35 



15 November 2008 

Table 5.4. CC class combinations used for comparisons with CT class types. 

Liquid Water 
Stratus (St) 
Stratocumulus (Sc) 
Cumulus (Cu) 
 
Mixed phase / Supercooled water 
Altocumulus (Ac) 
Altostratus (As) 
Cumulus Congestus (CuC) 
 
Glaciated 
Cirrocumulus (Cc) 
Cirrostratus (Cs) 
Cumulonimbus (Cb) 
CsAn 
 
Clear (Clr)  
Cirrus (Ci)   

Table 5.5. Percent (%) distribution of pixels within each CT algorithm type 
(columns) matched with CC class (rows) – columns sum to ~100%. 

 Clr Liq Mix Glac Ci OL 
Clr 94.0 7.4 1.1 0.1 10.9 0.0 
Liq 4.4 89.5 57.2 0.8 18.9 5.9 
Mix 0.6 3.0 31.3 16.7 18.6 30.9
Glac 0.5 0.0 2.5 74.9 24.2 50.7

Ci 0.5 0.1 8.0 7.5 27.3 12.5

Table 5.6. Percent (%) distribution of pixels within each CC class (rows) matched 
with CT algorithm type (columns) – rows sum to ~100%. 

 Clr Liq Mix Glac Ci OL 
Clr 80.2 11.5 0.8 0.0 7.5 0.0 
Liq 1.9 70.2 19.7 0.1 6.5 1.6 
Mix 0.8 7.6 35.4 7.0 21.1 28.0
Glac 0.6 0.0 2.6 29.1 25.4 42.3

Ci 1.4 0.4 16.4 5.7 55.9 20.3

within the front in Figure 5.6.  High thin clouds are streaming across the low clouds 
associated with the front. 

Adding OL samples to the CC training data, or establishing a post-processing check to 
determine if an overlapping cloud situation exists, would improve the CC classifier.  Also, 
adjustment to the OL test in the CT algorithm, which is designed to minimize false 
alarms, would lower the frequency of misses by this classifier.  Such adjustments may  
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a) 

 
 

b) 

 
Figure 5.6.  Example case (16 Apr 2007, 1700 UTC) of CC classification (a) of mid-level 
clouds (As or Ac) and the CT classification (b) of OL for the same pixels (area marked in 
gold oval).   
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c) 

 

d) 

Figure 5.6, con’t. Example case (16 Apr 2007, 1700 UTC) showing the GOES-11 visible 
(c) and longwave IR ((d) - different image projection) channels. 
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enlist other observing systems such as CloudSat, CALIPSO, or the 1.38 µm band on 
MODIS. 

Relative to the CC classes used in the CDO, many of the disagreements occur when CC 
has a glaciated class (includes Cb and CsAn as well as Cs and Cc) and CT classifies the 
pixel as Ci or OL.  These pixel classification disagreements are most likely the result of 
class definitions (particularly with regards to optical thickness for Ci), lack of an OL 
class in the CC algorithm, and classifier design rather than complete misclassifications.  
Interestingly, more pixels classified by the CC algorithm as Cs and Cc were paired with a 
CT classification of OL than Glaciated; whereas, pixels classified by the CC algorithm as 
Cb and CsAn had a higher frequency pairing with Glaciated than OL.  These distributions 
are indicative of the optical thickness of the clouds as used indirectly in the class 
definitions and has given further confidence to the daytime classification provided by the 
CC algorithm to the CDO.  

Neither the CC nor the CT algorithm can guarantee a completely accurate cloud-type 
representation for any given GOES data set.  However, by using the output of each 
classifier, combined with knowledge of their reliability and limitations in certain 
situations, a final – more accurate - single classification product could be produced in 
certain situations and given user needs. 
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Topics Related to the Convective Nowcasting Oceanic Product 

6. Examination of Environmental Characteristics versus Storm Initiation Location 
(NCAR) 

6.1.  Introduction 

The importance of short-term forecasts for storm initiation has long been recognized by 
the aviation community; however, the skill to correctly forecast storm initiation remains 
poor, even over land where dense, surface-based observational networks are available. 
Over the ocean, storm initiation forecasts become even more challenging, owing to the 
lack of surface-based observational networks such as surface mesonets or the WSR-88D 
radar network. Recognizing the difficulty caused by the lack of surface-based 
observations, this study strives to utilize satellite-derived environmental parameters to 
identify favorable conditions for oceanic storm initiation.  

The environmental fields being evaluated include the sea surface temperature (SST), 
near-surface convergence/divergence, Convective Available Potential Energy (CAPE), 
Convection Inhibition (CIN) and the atmospheric relative humidity. A simple scatter plot 
approach is employed to investigate the environmental conditions favorable for 
convection initiation (CI) over the ocean. The domain for this study is the Gulf of Mexico 
(see Figure 4.1 for domain area). The time period spans Aug 12 – 23, 2007 during the 
passage of Hurricane Dean (see Section 2). During this time period, convective activity 
was abundant through both initiation of new storms and through the advection of existing 
storms. Hurricane Dean was well-captured by the CDO algorithm. 

6.2.  Methodology 

A simple scatter plot approach is employed to determine if the convective parameters 
under investigation serve as a good precursor of CI. CDO interest values contained within 
new convective storms, as represented by interest values >2.0, are plotted against various 
convective parameters to reveal potential relationships. Ideally, the full range of CDO 
interest values should be plotted (and will be at a later date) but, for this preliminary 
study, limiting the number of points was desired.  

Storm initiation is determined by the first occurrence of a storm as defined by the 
Thunderstorm Identification, Tracking and Nowcasting (TITAN; Dixon and Wiener 
1993) algorithm that is used to extrapolate/forecast the CDO product within the CNO. A 
minimum size criterion of 300 km2 is used and a CDO interest threshold of >2.5 is 
applied to define a “new storm” per the CNO specifications. Using these TITAN-
identified new storm polygons, the CDO interest field is thresholded to remove all storms 
except for the new ones. Then, scatter plots of the new storm CDO interest values versus 
various environmental convective parameters can be created. The CDO interest values (at 
each grid point) of the new storms are matched to the closest grid point of the 
environmental fields that occur within the hour previous to the new storm initiation time.  

In the scatterplots below, the reader will notice that vertical lines of points accumulate at 
CDO interest values of two and three. There are several potential causes for this. First, 
the CDO interest values have a maximum of three during the night and a maximum of 
four during the day as discussed in Section 3. Some of the accumulation at an interest 

40 



15 November 2008 

value of three can be explained by this. In the future, division of the new storms into day 
and night regimes will be done before plotting the scatterplots to examine what 
differences the time of day may create. Second, recall that the membership function for 
the CC algorithm (Figure 3.1d) scales the appropriate categories to interest values of 
either one-half  or unity which, after the weight of two is applied, become either unity or 
two, respectively. The CTOP and the GCD original values are scaled by the membership 
functions (Figure 3.1b,c) to include the full range of interest values between zero and 
unity. Thirdly, each point on the graph may contain many, many point-pairs that are 
indistinguishable. In the future a better method to represent the number of points will be 
employed.  

6.3. Analyses of Various Scatter Plots 

6.3.1. AMSR-E SST 

It is a well-know fact that new storms tend to form over warm water in the ocean. As is 
shown in Figure 6.1, the scatterplot of the Advanced Microwave Scanning Radiometer 
(AMSR-E) sea surface temperature (SST) versus new-storm CDO interest values shows 
that most new storms formed where SST is >26.0oC. The approximate normal 
distribution of SST has a mean of 29.5oC and a standard deviation of 1.7oC. This result is 
consistent with high SST values during the summer. 
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Figure 6.1. Scatter plot of AMSR-E SST versus 
CDO interest values associated with new 
storms for the Gulf of Mexico domain from 
Aug 12-23, 2007. 
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6.3.2. QUIKSCAT NEAR-SURFACE DIVERGENCE 

Surface convergence associated with surface boundaries has long been recognized as a 
precursor of CI over the land. Over the ocean, surface-based CI studies have been lagging 
due to lack of observational data. Thanks to QuikSCAT near–surface wind measurements, 
the relation between surface convergence and CI over the ocean can be studied. A scatter 
plot of QuikSCAT-derived near-surface divergence versus CDO interest values of newly 
initiated storms is shown in Figure 6.2. New storms were associated with both near-
surface convergence and divergence, with a slight bias toward convergence, as indicated 
by the mean divergence associated with all the new storms being -0.6 x 10-5 s-1. The grid 
spacing used for the QuikSCAT wind field was 0.25 degrees in latitude/longitude,  
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Figure 6.2. Scatter plot of QuikSCAT near-
surface divergence versus CDO interest 
values associated with new storms for the Gulf 
of Mexico domain from Aug 12-23, 2007.  
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indicating that the smallest resolvable wavelengths are on the mesoscale rather than the 
convective scale. 

6.3.3. AVERAGED RELATIVE HUMIDITY 

Figure 6.3 shows a scatter plot of layer-averaged relative humidity above the top of 
boundary layer (between 875-625 mb) from the GFS model analysis versus the CDO 
interest values of new storms. New storm positions are matched to the horizontal 
projection of the layer-averaged relative humidity values. Clearly, new storms tend to 
form in an environment rich in moisture and rarely form when averaged relative humidity 
was less than 50%. The mean of all averaged relative humidity associated with CI is 
~83%, with a standard deviation of ~10%. 

 CDO versus Averaged Relative Humidity
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Figure 6.3. Scatter plot of averaged 
relative humidity versus CDO interest 
values associated with new storms for 
the Gulf of Mexico domain from Aug 12-
23, 2007. 
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6.3.4. AIRS/AMSU AND GFS CAPE/CIN 

Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit 
(AMSU) provide vertical profile of atmospheric temperature and humidity that can be 
used to calculate standard convective parameters such as CAPE/CIN. The CAPE/CIN are 
calculated at 925 mb. For comparison, GFS surfaced-based CAPE and CIN fields are also 
obtained. The CAPE/CIN versus CDO interest scatter plots from both AIRS/AMSU and 
GFS are shown in Figure 6.4 and Figure 6.5, respectively. It is not surprising that both 
CAPE fields from AIRS/AMSU and GFS demonstrate no clustering in their distributions, 
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which is reinforced by the large standard deviation in Figure 6.4a,b. This result suggests 
that new storm formation can occur over a wide range of positive CAPE values. 
Considering the AIRS/AMSU CAPE is for air parcels at 925 mb while the GFS CAPE is 
surface-based, the mean value of CAPE from AIRS/AMSU and GFS are fairly similar. 
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Figure 6.4. Scatter plot of a) AIRS/AMSU CAPE for 925 mb, and b) GFS surface CAPE 
versus CDO interest values associated with new storms for the Gulf of Mexico domain 
from Aug 12-23, 2007.  

CIN fields from both AIRS/AMSU and GFS show clear trends that new storms tend to 
form in low/zero CIN regions, although high CIN values do not exclude CI. Convection 
initiation is the tug of war between two opposite forces, one is the upward forcing, and 
the other is the cap which needs to be penetrated before new storms can form. When 
convective forcing is strong, large CIN can still be destroyed. 
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Figure 6.5. Scatter plot of a) AIRS/AMSU CIN for 925 mb, and b) GFS surface CIN 
versus CDO interest values associated with new storms for the Gulf of Mexico domain 
from Aug 12-23, 2007.  

6.3.5. FRONTAL LIKELIHOOD FIELD 

One method to find out if frontal forcing plays an important role in storm initiation is to 
look at the scatter plot of frontal likelihood field (Megenhardt et al. 2004; Kessinger et al. 
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2008) versus the CDO interest values of new storms. The frontal likelihood is an interest 
field derived from GFS model data such that high frontal likelihood interest values 
correspond to front locations. A scatter plot of frontal likelihood interests versus CDO of 
new storms is shown in Figure 6.6. No clear trend of frontal likelihood versus CDO is 
revealed, suggesting that frontal forcing may not be the sole important forcing 
mechanism in new storm formation over the Gulf of Mexico during August 2007. This 
result may vary during the year, in particular for the winter months.  
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Figure 6.6. Scatter plot GFS-derived frontal 
likelihood interest field versus CDO interest 
values associated with new storms for the Gulf 
of Mexico domain from Aug 12-23, 2007. 
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6.4. Summary and Future work  

In this preliminary study, a simple scatter plot approach is employed to study the relation 
between various environmental conditions and new storm formation over the Gulf of 
Mexico domain for a relatively short period in August 2007. Various satellite-based 
convective parameters were derived, which include 1) AMSR-E SST, 2) QuikSCAT 
divergence, 3) AIRS/AMSU CAPE/CIN, 4) GFS surface CAPE/CIN, and 5) GFS-
derived averaged relative humidity and frontal likelihood field. It was found that SST, 
CIN and averaged relative humidity were potentially good discriminators of atmospheric 
conditions needed for convection initiation to occur, while CAPE and frontal likelihood 
field might not be good discriminators. However, many more analysis cases are needed to 
ascertain if these potential relationships hold true under all conditions and seasons. 

7. Validation of the Current CNO system (NCAR) 
With the goal of providing high resolution, tactical decision aids to oceanic pilots and 
dispatchers, short-term nowcasts of the location of convection, as identified by the CDO 
binary product, are produced for 1-hr and 2-hr intervals and displayed on the project web 
page (http://www.rap.ucar.edu/projects/ocn).  The extrapolation is accomplished via a 
cell-tracking technique, called TITAN (Dixon and Wiener, 1996), also discussed in the 
previous section.  The TITAN was developed for tracking 2- or 3-dimensional storms as 
identified by radar reflectivity, but for our purposes, the software performs similarly 
when used to track the 2-dimensional, binary CDO product. Instead of using a typical 
storm reflectivity value as the storm threshold, the threshold is reduced to 2.5 interest as 
discussed in Section 4.1. The TITAN extrapolates the storm cell position and anticipates 
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its growth and dissipation from past trends. A minimum storm size of 300 km2 is a 
criterion that must be met before a storm is identified and then tracked. 

For validation, a statistical comparison is done between the area enclosed by the TITAN 
shape at the forecast time and the CDO product (>2.5 interest) at the verification time for 
all forecasts produced between 12-22 August 2007, the period of Hurricane Dean’s 
passage through the greater Gulf of Mexico region (see Section 2). Standard statistical 
indicators are computed with results shown in Table 7.1 for the Critical Success Index 
(CSI; Donaldson et al. 1975) and the bias (Wilks 1995). While this analysis does not 
provide a fully independent comparison such as is possible for the TRMM-CDO 
validation (see Section 4), this process does validate the extrapolation of CDO positions 
and is consistent with methodologies used for validating forecast skill over the CONUS 
(Pinto et al. 2006). The TRMM validation provides an estimate of the quality of the CDO 
binary product while this analysis provides an estimate of the quality of the CNO 
extrapolation process. 

As expected, the best CSI performance is realized at the 1-hr nowcast (0.50) with 
declining performance at 2-hr (0.39) and 3-hr (0.31). Bias scores show a modest decrease 
with time from 0.79 to 0.76 to 0.74. The CNO CSI and bias scores produced for these 11 
days compare favorably to those produced by the National Convective Weather Forecast 
- 6hr (NCWF-6) system (Pinto et al. 2006) for one day. The NCWF-6 is primarily a 
radar-based nowcasting system developed with FAA AWRP support to extend 
convective nowcasts to 6-hr using a blended observation- and NWP-based methodology. 
In the NCWF-6 analysis (Pinto et al. 2006), the CSI scores are plotted hourly over the 
diurnal cycle for a Great Plains squall line initiation case to illustrate performance 
differences related to convection initiation, extrapolation and dissipation. CSI scores for 
the 1-hr nowcast varied over the diurnal cycle from 0.2-0.4 and from 0.05-0.35 for the 2-
hr nowcast with maximum scores realized several hours after the squall line formed. 
Further evaluation in the same vein is planned for the CNO. 

Table 7.1. Statistical indicators are summarized for 1-hr,  2-hr and 3-hr intervals for 
the CNO for the period from 12-22 August 2007.  

Nowcast Period  

1-hr 2-hr 3-hr 

Critical Success 
Index 

0.50 0.39 0.31 

Bias 0.79 0.76 0.74 

In
di

ca
to

rs
 

Number of 
Forecasts 

319 315 389 

Figure 7.1 compares a 1-hr and 2-hr CNO nowcasts to the CDO binary product, both 
having the same verification time of 2315 UTC. The 1-hr nowcasts (cyan polygons in 
Figure 7.1a) enclose the CDO validation product fairly well. The polygons tend to be  
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a) 1-hr validation 

4.0 

b) 2-hr validation 

4.0 

Figure 7.1. For 17 August 2007, the CDO (magenta shapes) is shown at the validation 
time of 2315 UTC for the a) 1-hr nowcast made at 2215 UTC and for the b) 2-hr nowcast 
made at 2115 UTC. The position of the CDO at the respective forecast times is indicated 
in both panels by orange polygons. The 1-hr CDO nowcast is indicated in a) with the 
cyan polygons and the 2-hr nowcast is in b) with green polygons. Vectors (arrows) 
indicate storm motion but are not proportional to storm speed. 
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generous in size compared to the area of the CDO with occasional location displacements. 
In Figure 7.1b, the 2-hr nowcast polygons show similar results with some reduction in 
performance. For both, the position predictions for Hurricane Dean validated very well. 

8. Nowcasting using Random Forest Classification (NCAR) 

8.1. Introduction 

The traditional methodology employed within nowcasting systems involves an 
extrapolation scheme that either tracks storms as objects or looks for correlations between 
time periods to ascertain a storm motion vector. The CNO, which utilizes an object-
tracker called TITAN (Dixon and Weiner, 1993) as its extrapolation scheme, is one such 
example. The novel method of using random forest classification for nowcasting takes a 
completely different approach. In machine learning, a random forest is a classifier that 
consists of many decision trees and outputs the class that is the mode of the class voted 
by each individual tree. As a promising technique, random forest has been widely applied 
in various scientific fields, including the development of the FAA’s Consolidated Storm 
Prediction for Aviation (CoSPA). 

The wide usage of random forest is the result of a number of advantages this technique 
can provide as a statistical classifier. Some of the prominent advantages are listed below. 

1) Handles a very large number of input variables and produces a highly accurate 
classifier; 

2) Estimates the importance of input variables in determining classification. The 
relative importance of each input variable can be used to select the most effective 
predictors for classification; 

3) Handles missing data relatively well; 
4) Training the forest is fast; 
5) Provides an experimental way to detect variable interactions; 
6) Computes proximities between cases, which is useful for clustering, detecting 

outliers, and visualization of data by scaling. 

The following sections will describe the procedures of running random forest and present 
some preliminary results of nowcasting oceanic convection using the random forest 
classification. 

8.2. Procedures of training the random forest and classifying using the trained forest 

A set of predictors derived from geostationary and polar-orbiting satellites and the GFS 
numerical model are used as input variables to the random forest. The output variable 
(i.e., the forecast), which represents oceanic convection, is the CDO interest field. The 
goal of nowcasting oceanic convection is thus converted to forecasting CDO intensity, 
which ranges in values between 0 and 4, by using a set of predictors derived from 
satellite observations and GFS model fields. 

The flow chart of training and subsequent classification using the trained forest is shown 
in Figure 8.1. As a first attempt of exploring the random forest technique in oceanic 
weather, seven days of data (12-18 August 2007 from Hurricane Dean; see Section 2) are 
used to train a forest of 200 decision trees, while data from another four days (19-22 
August 2007 also from Hurricane Dean) are used for independent classification and 
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verification. An initial set of 17 predictors, which includes various satellite and GFS 
model-derived fields over the Gulf of Mexico domain, is employed in the random forest 
training/classification. All the satellite-based input predictors are advected 1-2 hr into the 
future using motion vectors derived by blending TITAN vectors with GFS steering level 
winds. Both the input predictor fields and the validation CDO interest field are converted 
from MDV (Meteorological Data Volume, an internal NCAR format) to ARFF 
(Attribute-Relation File Format) format, a format the random forest software can read. 
The ARFF files are then thinned and used for training a forest with 200 decision trees. To 
achieve reasonable accuracy, at least 100 decision trees are needed. The trained forest is 
used for independent classification/verification for four other days. 

Mdv to ARFF Thin the ARFF 

Train the RFClassification 

Figure 8.1. Flow chart for training the random forest and for classifying using the 
trained forest. 

The random forest produces votes of each CDO interest category (i.e., CDO interest 
value equals 0, 1, 2, 3 or 4) for each set of input predictors at forecast time. When it was 
found that the classification process, which creates the 1-hr forecast, could take ~1hr to 
run, we decided to thin the ARFF input file by using cloud top height as a threshold. Only 
regions with cloud top height over 10,000 ft are classified. By reducing the number of 
input grid points, the classification process takes ~20 min to run. Certainly the reduction 
in computing time depends on the weather condition inside the domain. 

One example of the votes for CDO interest equals 0, 1, 2, 3 and 4 is shown in Figure 8.2. 
Hurricane Dean can be seen clearly in the middle of the domain. As you would expect, 
the majority of the domain with no convection has most decision trees voting CDO = 0 
(see Figure 8.2a); at the same time, very few decision trees vote yes in the convection-
free region for CDO values greater than zero. The strong convection associated with 
Hurricane Dean has the majority of trees voting CDO interest = 3 (see Figure 8.2d).  

An example of a 1-hr random forest forecast of CDO and its corresponding verification is 
shown in Figure 8.3. It is interesting to notice that a CDO interest forecast purely derived 
through decision tree votes looks very similar to the CDO validation field, considering 
totally different techniques are used in calculating them. The random forest forecast was 
able to capture Hurricane Dean as well as other relatively weak convection over the Gulf 
of Mexico. It should be pointed out that the random forest forecast seemed unable to  
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Figure 8.2. An example showing the number of votes the random forest produced for 
various CDO interest values at 1415 UTC on August 19, 2007 over the Gulf of Mexico 
domain for a) CDO interest = 0 and b) CDO interest = 1. Figure continued on next page. 
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Figure 8.2, con’t. An example showing the number of votes the random forest produced 
for various CDO interest values at 1415 UTC on August 19, 2007 over the Gulf of 
Mexico domain for c) CDO interest =2 and d) CDO interest = 3. Figure continued next 
page. 

50 



15 November 2008 

 
Figure 8.2, con’t. An example showing the number of votes the random forest produced 
for d) CDO interest = 4. 

forecast CDO = 4 very well, therefore, some calibration might be needed for better 
verification results. 

8.3. Future Work 

While this first attempt to use the random forest machine learning technique to nowcast 
oceanic convection has shown promise, plenty of improvements can be pursued in the 
near future. First, the input predictor list will be expanded to include more fields; 
secondly, the forecast should be extended to 2-hrs; and finally, statistical verification 
should be performed on the CDO interest forecast from random forest so that its 
performance can be compared to the current CNO performance. 
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a) 1-hr CDO nowcast 

b) Verification 

Figure 8.3. An example of random forest created CDO 1-hr forecast and its 
corresponding verification at 1415 UTC on August 19, 2007 over the Gulf of Mexico 
domain. a) 1-hr CDO random forest forecast, and b) CDO verification. 

9. Use of Geostationary-Tracked Winds for Storm Extrapolation (NCAR) 

Within the CNO system, the TITAN object tracker provides the initial estimates of storm 
motion for cells identified by the CDO product. However, this initial wind field is 
frequently noisy due to fluctuations in storm position upon which TITAN depends. 
Within the CNO system as currently configured, the initial TITAN storm motion vectors 
are merged with the GFS gridded winds at 700 mb to improve performance of the storm 
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extrapolation. The winds at 700 mb are assumed to be the steering winds for deep 
convection. Once the merger is accomplished, spatial and temporal filters are applied to 
produce the final extrapolation wind field that is used to nowcast storm position. The 
GFS model has relatively coarse resolution with a grid spacing of 0.5 degrees in latitude 

vals. The NRL also has CMVs available and they are 

ith GFS and CMV to see what 

e disagreement between the two is not known 
as of this writing but will be investigated.  

and longitude. 

Cloud motion vectors (CMV) have been derived from geostationary satellite imagery 
(Visible, infrared and water vapor channels) for many years (Menzel 2001) and are 
available operationally from the National Oceanic and Atmospheric Administration 
(NOAA) at approximately 3-hr inter
providing these data for this effort.  

During the data assimilation processing for the GFS, the CMV are input as a data source. 
However, these winds frequently reflect mesoscale motions that the global model must 
necessarily reject since the motion scales are at too fine a scale. Therefore, merging CMV 
with the GFS winds can, theoretically, return mesoscale motions that may be important 
for determining the correct trajectory for a storm. To test this possibility, an effort is 
underway to measure extrapolation performance using varying wind fields from either 
TITAN merged with GFS winds or TITAN merged w
effect the CMV may have on storm motion prediction. 

A preliminary example (Figure 9.1) shows that the CDO with the TITAN 2-hr nowcasts 
of storm position indicated by the polygons. The TITAN storm motion vector is also 
indicated along with the storm speed, and the CMV between 750-650 mb are also plotted. 
To better compare the CMV to the TITAN storm motion vectors, the left portion of 
Figure 9.1 is magnified and displayed in Figure 9.2. As Figure 9.2 shows, the CMV and 
the TITAN storm motion vectors frequently agree in direction, if not speed. However, 
there are also some notable exceptions where the two vectors do not agree. This work is 
in preliminary stages and the reason for th
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a) 

CMV Wind Barb Scaling 
Red: > 36 km/hr 
Green: 18-36 km/hr 
Blue: 0-18 km/hr 

b) 

Figure 9.1. In both a) and b) the unthresholded CDO interest field is shown from 16 
October 2008 at 05:45 UTC with the TITAN polygons (brown polygons) that indicates 
the 2-hr nowcast of storm position along with the storm motion vector (not proportional 
to storm speed) and storm speed (text). In b) the CMV between 750-650 mb, up to 3-hr 
prior are plotted following the key in the upper right. Wind speeds are plotted in km/hr 
with a full barb equal to 10 km/hr. 
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CMV Wind Barb Scaling
Red: > 36 km/hr 
Green: 18-36 km/hr 
Blue: 0-18 km/hr 

Figure 9.2. A comparison is shown of the CMV and the TITAN storm motion vectors (not 
proportional to storm speed) and storm speed (text). The domain is a subset of that shown 
in Figure 9.1 (left quadrant).   

10. Comparison of African Dust and Lightning Activity in the Area of Miami, 
Florida and the Gulf of Mexico (MIT LL) 

To examine the possibility that observations of dust transport from Africa could assist in 
efforts to nowcast the level of convection/lightning activity in the greater Gulf of Mexico 
region, a brief feasibility study was conducted by Earle Williams, MIT LL, in 
collaboration with J. M. Prospero, University of Miami, and V. Phillips, University of 
Hawaii with results presented here. Dr. Williams was funded by this ROSES grant while 
Drs. Prospero and Phillips were funded by their universities. The goal of this study was to 
ascertain if the inclusion of aerosol observations from the Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observation (CALIPSO), as an additional indicator into the 
CNO system for the Random Forest technique, would produce positive impacts on 
nowcast performance.  

10.1. Introduction   

The interest in aerosols that modulate cloud microphysics, and thereby cloud dynamics, 
precipitation and lightning, has increased in recent years (Rosenfeld et al., 1999; Orville 
et al., 2001; Williams et al., 2002; Steiger and Orville., 2002)  The basic idea is that when 
an updraft is polluted with aerosol (with cloud condensation nuclei), the available liquid 
condensate is shared among a larger number of nucleation sites, so the cloud droplets are 
smaller than they otherwise would have been in cleaner conditions. The immediate 
impact is that the coalescence of cloud droplets is suppressed, and consequently 
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precipitation as well. A secondary impact is that the available cloud water can rise higher 
in the cloud and into the mixed phase region where it can participate in the Bergeron 
process and the riming growth of graupel, and thereby invigorate the process of cloud 
electrification and lightning (Williams et al, 2002). There is particular interest in these 
ideas in the tropical maritime environment (such as the Gulf of Mexico considered here) 
which is ordinarily aerosol-sparse and whose main mechanism for precipitation formation 
is the warm rain process at sub-freezing temperatures, and where lightning is ordinarily 
scarce. This is the context of recent interest in a role for aerosol in the invigoration of 
hurricanes (Rosenfeld et al., 2007), and the lightning activity within them (Jenkins et al., 
2008). 

Field tests for a role for aerosol (and thermodynamics) in lightning activity have been 
previously carried out in Brazil (Williams et al, 2002) during the NASA TRMM LBA 
campaign in 1999-2000. Though intense lightning activity was observed during the 
polluted pre-monsoon regime there, it was also observed during the clean phase that 
followed. The overall conclusion was that the aerosol played only a secondary role (to 
thermodynamics) in influencing the electrical activity in the rainforest region of 
Rondonia under study there. 

A positive anomaly in lightning activity over heavily polluted Houston, Texas has been 
documented (Orville et al., 2001; Steiger and Orville, 2002) with the National Lightning 
Detection Network—roughly an enhancement of a factor-of-two relative to adjacent areas.  
One explanation for the positive anomaly has been the existence of urban aerosol 
exacerbated by the oil refineries there. An alternative explanation is the urban heat island 
effect that serves to invigorate convective activity by providing greater instability. 
Support for the latter interpretation and against a role for aerosol is the evidence that 
precipitation in the Houston areas is enhanced, not suppressed (Shepherd and Burien, 
2003). 

The prodigious African dust source provides additional opportunities to study the impact 
of dust on convective vigor and lightning. Africa is the largest source of mineral aerosol 
in the world. In prevailing easterly flow in northern hemisphere (NH) summer months, 
large quantities of dust are swept off Africa and advected to the Americas. The Saharan 
Air Layer (SAL) is one mode of synoptic scale dust transport, and is accompanied by a 
temperature inversion that also translates all the way to the Americas. Dr. Joseph 
Prospero has maintained dust monitoring sites in Barbados (Prospero and Lamb, 2003) 
and in Miami, Florida (Prospero et al., 1987) that are close to the Gulf of Mexico region 
that is of interest for the Oceanic Convective Diagnosis and Nowcasting work. 

An initial look at the impact of African dust on cirrus cloud was possible during the 
Crystal Face experiment in Florida (Sassen et al., 2003). As a follow-on to this 
experiment, Van den Heever et al. (2006) conducted a modeling study that incorporated 
aerosol effects. Greater updrafts were documented in the models when aerosol was 
prevalent. 

This study is concerned with the observational tests of the role of African dust on 
lightning activity in the vicinity of the dust-measuring site in Miami. Two possible modes 
of behavior were anticipated on the basis of foregoing ideas and experience: (1) the 
lightning activity would be enhanced by the presence of dust and (2) the entire population 
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of moist convection (and attendant lightning) is suppressed by the occurrence of the 
inversion accompanying the SAL. This study is concerned with an examination of these 
questions with coordinated observations of dust and lightning. 

10.2. Methodology 

The observation of dust loading in the atmosphere in Miami, Florida (25.75 N, 80.25E) 
has been described by Prospero et al. (1987).  On the basis of filter capture of mineral 
aerosol extracted from fixed volumes of air, the daily mean dust loading in micrograms 
per cubic meter is derived. These observations are available for the period 1989-2006. 

The continuous observation of cloud-to-ground lightning activity (in both negative and 
positive polarity) is available over the continental US by the National Lightning 
Detection Network (NLDN; Cummins et al., 1998).  The location accuracy in many 
locations of the US, including the Florida area, is now better than 1 km.  For purposes of 
comparison with the measured dust, daily lightning totals (of both polarities, and by the 
UT clock) were computed within two circular areas of 250 km radius, one centered on the 
dust collection site in Miami, Florida (25.75o N, 80.25o E) and one centered on a location 
in the Gulf of Mexico (26o N, 85o W) where the Lincoln Laboratory TRMM satellite 
validation effort is underway with NCAR. 

10.3. Preliminary Results 

The initial time series of dust was taken from 1996 and prepared for this study by J. 
Prospero, on the basis that this year was a very methodical one for data collection. The 
four panels of Figure 10.1 show the simultaneous time series for dust and for lightning 
for each of two circular domains, and for negative and positive lightning flashes.  The 
days with the largest dust loading are July 25-26, 1996 and were also days with no 
detected lightning.  Further investigation of satellite imagery for this day showed an 
absence of moist convection over the entire region of south Florida and the Gulf of 
Mexico, supporting the idea that the inversion associated with the dust intrusion was also 
inhibiting the convection. Other episodes in the record (July 4-5, 1996; August 7-8, 1996) 
suggested that the dust might be invigorating the lightning. 

Additional time series were explored in 1997 for the Miami area. These plots are shown 
in Figure 10.2. Again, pronounced lightning days are noted with and without 
accompanying dust enhancements. During some periods of greatly enhanced dust (July 
17-20, 1997; August 3-5, 1997), the lightning drops again to near zero.  Additional time 
series comparisons for 1998 are shown in Figure 10.3. 
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Figure 10.1. Initial time series of dust and lightning for two circular regions defined in 
the text, and for both negative and positive lightning polarities, for 1996. 

 
Figure 10.2. Time series comparisons of daily dust and lightning for the Miami area in 
1997. 
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Figure 10.3. Time series comparison of dust (top) and daily total cloud-to-ground 
lightning flashes (bottom) for the Miami area in 1998.  

A correlation plot of daily dust loading and daily lightning totals is shown in Figure 10.4.  
Little positive correlation is apparent, when all the days with lightning and dust are 
considered.  The correlation coefficient of the least squares fit is only 0.28. 

An additional test was undertaken to compare the distribution of dust loading on days 
with and without any lightning. The results are shown in histogram form in Figure 10.5.   
Despite the occurrence of the complete shutdown of lightning on the most heavily dust-
laden day in 1996 and on other days in 1997, here one does not see a tendency for days 
without lightning to have systematically large dust loadings (suggestive perhaps of 
stronger temperature inversions).  One does see however a tendency for greater amounts 
of dust on days with lightning, than on days without. 
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Figure 10.4. Correlation plot of daily dust loading versus daily lightning totals for 
observations in the Miami area for 1998.  The correlation coefficient of the least squares 
fit is 0.28. 

 
Figure 10.5. Histograms of numbers of days with specific dust loadings, for all days with 
lightning (left) and days without lightning (right) for observations in the Miami area in 
1998. 
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10.4. Discussion and Conclusion 

The absence of a tightly correlated behavior between daily dust content and daily 
lightning activity casts doubt on a primary role of the dust in influencing the convective 
intensity and lightning activity of the storms under investigation. This finding is broadly 
consistent with conclusions reached in Williams et al (2002) for the role of aerosol 
(produced by biomass burning) on lightning activity. In light of earlier findings 
supporting a primary role for thermodynamics in the lightning activity, it would be 
valuable to confirm such a tendency in the observations at hand by investigating 
measures of thermodynamically-controlled instability over the same time period. If 
satellite or radar measures of the individual storm cells contributing to the integrated 
lightning activity were available, it would also be valuable to implement some 
normalization for the number of lightning flashes per storm to correlate with the 
estimates for dust loading.  

Due to the lack of correlation between aerosol content and lightning activity, use of 
CALIPSO data within the CNO system will not be pursued. Further, the CALIPSO 
provides only vertical cross-sections through hazardous convection in contrast with the 
three dimensional information available with the TRMM radar data. Vertical cross-
sections provide for poor samples of convective cloud height, for example. The 
CALIPSO data are better suited for looking at long, two dimensional features, like the 
Intertropical Discontinuity (ITD) in Africa or the Pacific Intertropical Convergence Zone 
(ITCZ), as possible examples.  
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General Topics 

11. Enhancements to the Web Site (NCAR) 
The project web site has added a new domain for display of cloud top height product over 
the North Atlantic (Figure 11.1). This region was added at the request of an international 
dispatcher from Continental Airlines working out of Houston, TX, who has found the 
entire project web site quite useful. The display updates as soon as imagery is available. 

 
Figure 11.1 Project web pages are shown (http://www.rap.ucar.edu/projects/ocn) by the 
(left) main page and (right) the cloud top height product shown over the new North 
Atlantic domain. 

For Year 3, the new Pacific domain will be added to the Product Suite on the web site.  

12. Summary of Year 2 and Outlook for Year 3 (All Labs) 

Considerable progress has been achieved during Year 2 of this proposal and is 
particularly notable given the long delay in securing the contractual agreement between 
NCAR and MIT LL. Validation of the CDO product using TRMM products showed that 
it has skill at detecting convection and that the threshold of 2.5 provides the best 
performance. Preliminary efforts to utilize the Random Forest machine learning 
technique to improve upon current techniques within the CNO shows promise and will 
continue to be investigated.  The current methodology within the CNO (i.e., using 
TITAN for storm tracking) was validated and found to have skill for 1-hr and 2-hr 
nowcasts. Investigation into atmospheric and oceanic characteristics in the presence of 
convection initiation was accomplished to further our understanding of oceanic 
convection. The NRL GOES Cloud Classifier algorithm updates were successful and 
ensure that the algorithm can eventually be utilized within the NWS and/or the AWC. 
Initial testing of the Cloud Classifier has been accomplished for the MTSAT satellite and 
will be completed during Year 3, enabling the project expansion into the Pacific Ocean 
domain. A comparison of the Cloud Classifier to the cloud typing algorithm of Pavolonis 
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and Heidinger (adapted for use at NRL by S. Miller and C. Mitrescu) showed that the 
algorithms, for the most part, produce comparable results, thus strengthening the 
confidence in the classifier output. A study was completed to examine the possibility of 
using African dust transport into the Gulf of Mexico region as an indicator for convective 
suppression or enhancement but results were counter to their use within the CNO. 
Ingesting Cloud Motion Vectors into the operational system has been accomplished; 
further work is required to investigate and validate their usefulness in storm extrapolation. 
The addition of the North Atlantic domain into the web display of the cloud top height 
product was completed.  

During Year 3 of this project, expansion of the CDO/CNO capability into the Pacific 
domain will be accomplished over a yet-to-be determined domain. Completion of studies 
that were begun during Year 2, such as the Random Forest and the use of cloud motion 
vectors, will be completed and implemented if found to be an improvement over existing 
techniques. Methodology to evaluate the CDO using TRMM will be adapted to validate 
the CNO 1-hr and 2-hr nowcasts.  

13. Papers Submitted (All Labs) 
One journal article appeared in the January 2008 issue of the Journal of Applied 
Meteorology and Climatology, as follows: 

Donovan, M.F., E.R. Williams, C. Kessinger, G. Blackburn, P.H. Herzegh, R.L. 
Bankert, S. Miller, and F.R. Mosher, 2008: The identification and verification of 
hazardous convective cells over oceans using visible and infrared satellite 
observations. J. Appl. Meteor. and Clim., 47 (1), 164-184. 

One reviewed paper was submitted and presented at the SPIE Conference in San Diego 
during August 2008. The paper was published in the SPIE Proceedings, as follows: 

Kessinger, C., M. Donovan, R. Bankert, E. Williams, J. Hawkins, H. Cai, N. Rehak, 
D. Megenhardt, and M. Steiner, 2008: “Convection diagnosis and nowcasting for 
oceanic aviation  applications” in Remote Sensing Applications for Aviation 
Weather Hazard Detection and Decision Support, edited by Wayne F. Feltz, John J. 
Murray, Proceedings of SPIE Vol. 7088 (SPIE, Bellingham, WA, 2008) 7088-08, 
San Diego, 10-14 August 2008. 

Three papers were submitted and presented at the AMS Annual Meeting held in New 
Orleans during January 2008.  

Bankert, R.L., C. Mitrescu, S.D. Miller and R.H. Wade, 2008: Comparison of GOES 
cloud classification algorithms employing explicit and implicit physics, 
Proceedings, 5th GOES Users’ Conf., Amer. Meteor. Soc., New Orleans, LA, 20-
24 Jan 2008. 

Cai, H., C. Kessinger, N. Rehak and D. Megenhardt, 2008: Investigation into 
environmental conditions for storm initiation over the ocean using satellite data. 
13th Conf. on Aviation, Range, and Aerospace Meteorology, Amer. Meteor. Soc., 
New Orleans, LA, 20-24 Jan 2008. 

Kessinger, C., H. Cai, N. Rehak, D. Megenhardt, J. Hawkins, and E. Williams, 2008: 
Oceanic Convection Diagnosis and Nowcasting. 13th Conference on Aviation, 
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Range, and Aerospace Meteorology, American Meteorology Society, New Orleans, 
LA, 20-24 January 2008. 

The conference paper by Williams et al. (below) was not funded by this ROSES-2005 
award, but is shown to indicate the leveraging that is occurring within NCAR/RAL to use 
the Random Forest technique for nowcasting.  This paper was presented at the AMS 6th 
Conference on Artificial Intelligence and its Applications to the Environmental Sciences.  

Williams, J.K., D. Ahijevych, C. Kessinger, T. Saxen, M. Steiner, and S. Dettling, 
2008: A machine learning approach to finding weather regimes and skillful 
predictor combinations for short-term storm forecasting. 6th Conference on 
Artificial Intelligence and its Applications to the Environmental Sciences, 
American Meteorology Society, New Orleans, LA, 20-24 January 2008. 

Three abstracts were submitted to the 16th Conference on Satellite Meteorology and 
Oceanography for the American Meteorological Society Annual Meeting to be held in 
Phoenix, AZ during 11-15 January 2009. They are: 

Cai, H., C. Kessinger, D. Ahijevych, J. Williams, N. Rehak, D. Megenhardt, R. L. 
Bankert, J. Hawkins, M. F. Donovan, E. R. Williams, 2009: Nowcasting oceanic 
convection using Random Forest classification. 

Donovan, M. F., E.R. Williams, C. Kessinger, N. Rehak, H. Cai, D. Megenhardt, R.L. 
Bankert, and J. Hawkins, 2009: An evaluation of a convection diagnosis algorithm 
over the Gulf of Mexico using NASA TRMM observations. 

Kessinger, C., H. Cai, N. Rehak, D. Megenhardt, M. Steiner, J. Hawkins, R. Bankert, 
M. Donovan, and E. Williams, 2009: The oceanic convection diagnosis and 
nowcasting system.  
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