
Remote Sensing of Environment xxx (2015) xxx–xxx

RSE-09531; No of Pages 11

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Active fire detection using Landsat-8/OLI data
Wilfrid Schroeder a,⁎, Patricia Oliva a, Louis Giglio a, Brad Quayle b, Eckehard Lorenz c, Fabiano Morelli d

a Department of Geographical Sciences, University of Maryland, College Park, MD, USA
b USDA Forest Service Remote Sensing Applications Center, Salt Lake City, UT, USA
c Institute of Optical Sensor Systems, German Aerospace Center, Berlin, Germany
d Brazilian Institute for Space Research, São José dos Campos, Brazil
⁎ Corresponding author at: Department of Geogra
Maryland, 2181 LeFrak Hall, College Park, MD 20742, USA

E-mail address: wschroed@umd.edu (W. Schroeder).

http://dx.doi.org/10.1016/j.rse.2015.08.032
0034-4257/© 2015 The Authors. Published by Elsevier Inc

Please cite this article as: Schroeder, W., et
dx.doi.org/10.1016/j.rse.2015.08.032
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 6 April 2015
Received in revised form 10 August 2015
Accepted 31 August 2015
Available online xxxx
The gradual increase in Landsat-class data availability creates newopportunities forfire science andmanagement
applications that require higher-fidelity information about biomass burning, improving upon existing coarser
spatial resolution (≥1 km) satellite active fire data sets. Targeting those enhanced capabilities we describe an
active fire detection algorithm for use with Landsat-8 Operational Land Imager (OLI) daytime and nighttime
data. The approach builds on the fire-sensitive short-wave infrared channel 7 complemented by visible and
near-infrared channel 1–6 data (daytime only), while also expanding on the use of multi-temporal analysis to
improve pixel classification results. Despite frequent saturation of OLI's fire-affected pixels, which includes radio-
metric artifacts resulting from folding of digital numbers, our initial assessment based on visual image analysis
indicated high algorithm fidelity across a wide range of biomass burning scenarios, gas flares and active
volcanoes. Additional field data verification confirmed the sensor's and algorithm's ability to resolve fires of
significantly small areas compared to current operational satellite fire products. Commission errors were greatly
reduced with the addition of multi-temporal analysis tests applied to co-located pixels, averaging less than 0.2%
globally. Because of its overall quality, Landsat-8/OLI active fire data could become part of a network of emerging
earth observation systemsproviding enhanced spatial and temporal coverage of biomass burning at global scales.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Each year hundreds of thousands of biomass burning related fires
are detected globally using spaceborne remote sensing data (Dwyer,
Pinnock, Grégoire, & Pereira, 2000; Giglio, Csiszar, & Justice, 2006;
Ichoku, Giglio, Wooster, & Remer, 2008). Satellite-detected thermal-
anomalies are predominantly associated with land use practices
(maintenance and conversion fires), wildfires ignited by lightning or
human causes and other natural occurring phenomena or processes
(e.g., volcanic activity, etc.). Industrial heat sources can also be detected
(Bowman et al., 2009; Schroeder et al., 2008b). Biomass burning effects
can be observed across local to global scales, impacting soil chemistry,
surface runoff, land surface heat and energy balances, and air quality,
among others (Larsen et al., 2009; Liu, Randerson, Lindfors, & Chapin,
2005; Wiedinmyer et al., 2006). Negative ecological effects may result
from biomass burning in non-fire-adapted vegetation or as a conse-
quence of altered fire regimes (e.g., encroachment of invasive species
and changes to stand structure), whereas positive effects are typically
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observed in fire-adapted biomes that benefit from nutrient cycling and
seeding (Freeman et al., 2007; Higgins et al., 2007; Oliveras et al.,
2012). In areas such as the western United States, southern Australia,
and the Iberian Peninsula, large wildfires occurring along the wildland-
urban interface pose risks to both life and property and are cause of
major socioeconomic concern (Mell, Manzello, Maranghides, Butry, &
Rehm, 2010). Management efforts associated with those events typically
involve large investments in fuel treatments, community response plan-
ning, active firemapping and suppression, and post-fire stabilization and
restoration (Schoennagel, Nelson, Theobald, Carnwath, & Chapman,
2009).

For more than a decade, satellite remote-sensing active fire data
have been extensively used to inform fire management systems
(Davies, Ilavajhala, Wong, & Justice, 2009). Similarly, numerous air-
quality and carbon emissions mapping methodologies have benefited
from point source information provided by satellite active fire detection
and characterization data sets (Ichoku & Kaufman, 2005; Kaiser et al.,
2012; van der Werf et al., 2010; Vermote et al., 2009). Other related ac-
tive fire data applications include assessment of fire-affected areas and
seeding of burned area algorithms (Giglio, Loboda, Roy, Quayle, &
Justice, 2009; Hantson, Padilla, Corti, & Chuvieco, 2013; Loboda, O'Neal
& Csizar 2007; Kasischke, Hewson, Stocks, van der Werf, & Randerson,
2003; Oliva & Schroeder, 2015), fire growth and spread rate analyses
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Table 1
List of 30m resolution Landsat-8/OLI channels used in the active fire detection algorithm,
and their primary application.

OLI channel Wavelength
(μm)

Application

1 0.43–0.45 Active fire detection & water mask
2 0.45–0.51 Water mask
3 0.53–0.59 Water mask
4 0.64–0.67 Water mask
5 0.85–0.88 Active fire detection & water mask
6 1.57–1.65 Active fire detection & water mask
7 2.11–2.29 Active fire detection, water mask & temporal analysis
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(Csiszar & Schroeder, 2008; Loboda & Csizar, 2007; Pozo, Olmo, &
Alados-Arboledas, 1997), and detection of fossil fuel emissions sources
from gas flares (Casadio, Arino, & Serpe, 2012; Elvidge et al., 2009;
Elvidge, Zhizhin, Hsu, & Baugh, 2013), among others.

The use of Landsat-class data to detect thermal anomalies has been
successfully demonstrated in previous studies. For example, Francis
and Rothery (1987) and Oppenheimer (1991) applied near infrared
(NIR) and short-wave infrared (SWIR) Landsat-5 Thematic Mapper
data to case study analyses of volcanic activity. Others expanded on
thermal anomalies applications to include long-wave infrared data
from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced
Thematic Mapper Plus (ETM+) (Flynn, Harris, & Wright, 2001;
Anejionu, Blackburn, & Whyatt, 2014). A more generic application of
NIR and SWIR Landsat-class data to detect actively burning fires was
also demonstrated (Giglio et al., 2008; Schroeder et al., 2008a). However,
because of limited data availability and access restrictions previous stud-
ies using those active fire dataweremainly focused on regional validation
analyses of active fire products derived from the 1-kmModerate Resolu-
tion Imaging Spectroradiometer (MODIS) and the 4-km Geostationary
Operational Environmental Satellite (GOES) imager (Csiszar, Morisette,
& Giglio, 2006; Morisette, Giglio, Csiszar, & Justice, 2005; Schroeder
et al., 2008a).

While the spatial and temporal coverage provided by individual
Landsat-class sensors remained relatively unchanged over the years,
the adoption of free data policies and the launch of new instruments
by international agencies helped gradually increase the availability of
Landsat-class data creating renewed opportunities for biomass burning
applications. The current United States Geological Survey (USGS)
Landsat, China-Brazil Earth Resources Satellite (CBERS), Indian
Resourcesat, and European Space Agency Sentinel-2 programs are
good examples of the growing number of Landsat-class assets serving
the broader user community. Compared to traditional ≈1-km spatial
resolution satellite fire products, Landsat-class data offer significantly
improved mapping capability generating detailed fire line information.
Those assets have the potential to transform the way satellite data are
used in support of fire management, adding to current airborne tactical
fire mapping resources, for example, and providing consistent and reli-
able fire information to decision support systems operating at similar
spatial scales. A direct application of such concept was demonstrated
byCoen and Schroeder (2013, 2015), who successfully used spatially re-
fined satellite fire data to initialize and later verify coupled weather-fire
model simulations of large long-duration wildfires in the western
United States.

In this study, we present an active fire detection algorithm for use
with the Landsat-8 day and nighttime data. The approach builds on pre-
vious algorithms applied to the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) and Landsat-7 ETM+ NIR
and SWIR data while further expanding the use of multi-temporal anal-
ysis to improve the classification of individual pixels.

2. Input Data

Landsat-8 was designed by the National Aeronautics and Space
Administration (NASA) and launched on 11 February 2013 carrying
the Operational Land Imager (OLI) and the Thermal Infrared Sensor
(TIRS), and subsequently transferred to USGS for routine operations
(Roy et al., 2014). Placed on a sun-synchronous orbit at 705 km altitude
and 10:00 a.m. equatorial crossing time for the descending node,
Landsat-8 has a 16-day repeat cycle although data acquisition strategy
may vary based on geographic coverage (including seasonal sampling
and cloud coverage) and overall science mission objectives (Irons,
Dwyer, & Barsi, 2012; Roy et al., 2014). In this study, we used standard
terrain corrected (Level 1 T) data from OLI, which is a nine spectral
channel push-broom sensor with a spatial resolution of 30 m (15 m
for the panchromatic channel 8), and an individual scene size of
185 km × 180 kmmatching the second World-wide Reference System
Please cite this article as: Schroeder, W., et al., Active fire detection usin
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(WRS-2) of path and row coordinates (Irons et al., 2012). Quantized
and calibrated scaled digital numbers (DNs) for each OLI band are deliv-
ered as 16-bit unsigned integers. Those are converted to top-of-
atmosphere (TOA) spectral radiance and planetary reflectance values
using the rescaling coefficients found in the metadata (MTL) file
available with the L1T data.

The Landsat-8 activefire detection builds on previous algorithmsde-
veloped for ASTER and Landsat-7 ETM+(Giglio et al., 2008; Schroeder
et al., 2008a). Both methodologies used a two-channel fixed-threshold
plus contextual approach exploring the differential radiometric re-
sponse of the SWIR (channel 8 on ASTER; channel 7 on ETM+) and
the NIR (channel 3 N on ASTER; channel 4 on ETM+) data to classify
fire-affected pixels. Here, we expand on that original methodology
using top-of-atmosphere spectral reflectance data from seven different
OLI channels. The list of OLI channels usedby thefire algorithm is shown
on Table 1, along with their intended application. Complementing the
input OLI data described on Table 1, pixel-based cloud coverage infor-
mation is derived from the auxiliary quality band (cloud confidence
bits 14–15) for use in themulti-temporal analysis discussed in Section 4.

As with ASTER and ETM+data, active-fire-affected pixelsmay often
exceed the maximum resolvable radiance on OLI's fire-sensitive SWIR
channel 7, causing frequent pixel saturation. Spurious DN values and ar-
tificial radiancesmay be output by the analog-to-digital converterwhen
the input signal exceeds the nominal detector range. Under more ex-
treme conditionswhen large and/or very high temperature fires occupy
the pixel footprint the increased radiance input to the detector can also
lead to folding of the pixel's DN (also known as oversaturation (Morfitt
et al., 2015)). This less frequent anomaly is typically characterized by
pixels of abnormally low OLI channel 7 radiance values located near
the core of actively burning fire perimeters, an artifact resulting from
the DN folding, accompanied by elevated radiance on the shorter wave-
length channels 6 and 5. Fig. 1 shows a manifestation of the DN folding
on channel 7 coinciding with the large and energetic Rim fire complex
in California/U.S., imaged on 31 August 2013. A small subset of the fire
perimeter on channel 6 reveals a 15 pixel wide area of elevated radi-
ances near the core, whereas the co-located channel 7 data show a
ring of elevated radiances around an anomalous low-radiance core
indicative of DN folding. The graphs on Fig. 1 show the channel 6 and
7 radiance profiles drawn across the active fire, and the histogram for
channel 7 radiances coincident with a larger sample consisting of over
4500 fire-affected pixels on the scene. The channel 6 profile shows
high radiance values near the center of the fire, including pixels at or
above the nominal saturation of 71.3 W/(m2 sr μm). The same core
area shows near-zero and artificially low channel 7 radiance values
surrounded by other pixels at or above the nominal saturation of
24.3 W/(m2 sr μm), therefore describing a typical DN folding scenario.
We note that the maximum observable radiance on channels 6 and 7
are 96 and 29 W/(m2sr μm), respectively (Morfitt et al., 2015).

The histogram in Fig. 1 shows the highest number of pixels associat-
edwith the Rimfirewith radiance values around the nominal saturation
on channel 7. In addition, a non-negligible number of pixels with radi-
ance values above the nominal saturation are found as a result of analog
high saturation. A few pixels corresponding to DN folding are found
g Landsat-8/OLI data, Remote Sensing of Environment (2015), http://
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Fig. 1. Landsat-8/OLI channel 6 (top-left) and 7 (top-center) image subsets acquired on 31August 2013 over the Rimfire in California/U.S (37.760°N119. 965°W; path/row43/34). The low
radiancefire core on channel 7 is indicative ofDN folding. The radiance profiles (bottom-left, bottom-right) correspond to thehorizontal line across each subset. The spurious drop in chan-
nel 7 radiance is the result of DN folding; the same pixels show saturated radiances on channel 6. The histogram describing channel 7 radiances for all 4500 fire-affected pixels (marked in
red) in the top-right image subset is shown on the bottom-right panel. The peak in the radiance distribution coincides with the nominal saturation radiance (24.3 W/(m2srμm)). Pixels
exceeding the nominal saturation are representative of analog high saturation. A small number of pixels describing DN folding can be found near the low end of the radiance range. The
small yellowbox in the top-right panel indicates the area subject toDN folding. (For interpretation of the references to color in this figure legend, the reader is referred to thewebversion of
this article.)
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near the low end of the radiance range on channel 7. While this partic-
ular case describes characteristics associated with significant fire inten-
sity for a major wildfire event, folding of OLI channel 7 DN can also be
observed over some large gas flares.

3. Active fire algorithm

The Landsat-8 active fire detection algorithm is divided into day and
nighttime modules. Both detection modules are driven by the fire-
sensitive SWIR channel 7 data, exploiting the emissive component of
fires in the 2.2 μm spectral window. During the daytime orbits the
Fig. 2. Geographic distribution of primary Landsat-8/OLI Level 1 T scenes u

Please cite this article as: Schroeder, W., et al., Active fire detection usin
dx.doi.org/10.1016/j.rse.2015.08.032
emissive fire component is mixed with the background, which is dom-
inated by the reflected solar component. In order to separate those, we
use the NIR channel 5 data that are mostly unresponsive to fire-affected
pixels, though highly correlated to the SWIR channel data over fire-free
surfaces (Giglio et al., 2008). During night orbits the reflected solar com-
ponent is absent from the scene, making the SWIR band particularly re-
sponsive to the emitted radiance from active fires in an otherwise dull
background. In both day and nighttime data, the radiometric signature
of active fires produces a SWIR radiance or reflectance anomaly when
compared to thebackground, therebymimicking the concept of thermal
anomaly detection using mid-to-thermal infrared channels.
sed for training and validation of the active fire detection algorithm.
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Fig. 2 shows the distribution of Landsat-8 scenes used to train and
later validate the fire algorithm output. Scene selection allowed sam-
pling of a wide range of fire and observation conditions. Co-located
scenes indicate areas where multi-temporal data acquisitions were
obtained, with training and validation data analyzed separately. The
training data were used to calibrate the algorithm and were based
primarily on histogram analysis of single channel and dual-channel
(e.g., band ratios and differencing) data supported by detailed super-
vised pixel classification information. The latter was performed by
expert image analysts and corroborated by high spatial resolution
imagery (e.g., aerial photography and commercial satellite imagery
available in Google Earth) and other remotely sensed fire products.
These supporting data were used to validate fire activity identified by
the detection algorithm.

3.1. Daytime detection

The daytime algorithm uses input data from all seven OLI channels
listed in Table 1. The first test in thedaytimemodule is designed to iden-
tify potentially unambiguous active fire pixels. It builds on the ETM+
active fire algorithm (Schroeder et al., 2008a) while accommodating
small differences in OLI spectral channels, and is based on the following
condition:

R75N2:5 AND ρ7−ρ5N0:3 AND ρ7N0:5f g ð1Þ

where ρi is the reflectance on channel i, and Rij is the ratio between
channel i and j reflectances (i.e.,ρi/ρj).

As described in Section 2, highly energetic and extensive fires can
lead to folding of the DN on channel 7 thereby characterizing another
condition of potentially unambiguous active fire pixel. Those unique oc-
currences are flagged using:

ρ6N0:8 AND ρ1b0:2 AND ρ5N0:4 OR ρ7b0:1ð Þf g: ð2Þ

Complementing the identification of unambiguous fire pixels, the
thresholds in test (1) are relaxed and other candidate fire pixels are se-
lected for further analyses based on the following criteria:

R75N1:8 AND ρ7−ρ5N0:17f g: ð3Þ

All pixels satisfying test (3)must thenmeet the following set offixed
threshold and contextual tests in order to be classified as potential fire-
affected pixels:

R75NR75 ̅þ max 3σR75 ;0:8
� � ð4Þ

AND

ρ7Nρ7 ̅þ max 3σρ7
;0:08

� � ð5Þ

AND

R76N1:6 ð6Þ

whereRij ̅ andσRij
(ρ7 ̅ andσρ7

) are themean and standard deviation
calculated for the band ratio (channel 7 reflectance) using valid back-
ground pixels from a 61 × 61 window centered on the candidate
pixel. Valid pixels are defined as those showing channel 7 reflectance
greater than zero, excluding water and unambiguous fire pixels.
Water pixels are classified based on spectral profiling using reflectance
data from all seven input channels. Two distinct tests are applied in
order to map oceans and inland water bodies according to:

ρ4Nρ5 AND ρ5Nρ6 AND ρ6Nρ7 AND ρ1−ρ7b0:2f g ð7Þ
Please cite this article as: Schroeder, W., et al., Active fire detection usin
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AND

f ρ3Nρ2ð Þ ð8Þ

OR

ρ1Nρ2 AND ρ2Nρ3 AND ρ3Nρ4ð Þg: ð9Þ

Tests (7 & 8) capture shallow and/or sediment-rich waters
(e.g., Amazon rivermouth)whereas tests (7 & 9) are useful formapping
deep and/or dark water bodies. This water-masking scheme resulted in
amore liberal classification compared to the available water confidence
bits in the L1T quality band, allowingmorewater pixels to be flagged al-
beit with some errors of commission. For example, tests (7 & 9) may
confuse water bodies and cloud shadows and thereby affect the valid
background statistics, although such classification errors had no notice-
able effect on the fire algorithm performance.

3.2. Nighttime detection

The absence of the reflected solar component from the nighttime
scenes makes the classification of fire-affected pixels significantly less
challenging. Here we use a single fixed-threshold test based on the
SWIR channel 7 radiance data and similar to Giglio et al. (2008):

L7N1 W= m2 � sr � μm� � ð10Þ

Where L7 is the channel 7 radiance. We did not encounter evidence
of DN folding in the nighttime scenes analyzed.We recognize, however,
that our assessmentwas limited by the reduced availability of nighttime
scene acquisitions. Additional tests using channel 6 radiance data may
be required to properly handle DN folding in those data.

4. Multi-temporal analysis

The Level 1T OLI data have a geolocation error requirement of 12 m
(Irons et al., 2012), greatly improving the co-location of surface features
observed on images acquired over multiple dates. Building on the en-
hanced geolocation data, we designed a simple procedure to help refine
the fire algorithm output using co-located data derived from previous
images acquired no more than 176 days apart. This temporal constrain
was applied in order to minimize the effects of seasonal variations
that could potentially alter the land surface conditions, while balancing
cloud-free data availability.

The approach is based on direct verification of previously processed
active fire data for spatially-coincident and temporally-persistent fire
pixels. This simple test is based on the assumption that typical biomass
burning fuels within a 30 m ground footprint are completely consumed
withinminutes, hours, or a fewdays of continuousflaming and/or smol-
dering combustion. Therefore pixels classified as potential fire-affected
areas by the detection algorithm that overlap with one or more previ-
ously detected fire pixels are assigned a persistent source class indicative
of temporally persisting detection. Such classification was found useful
to flag gas flares and other stationary urban heat sources (e.g., steel
mills). Consequently, it can be used to differentiate between open
vegetation fires and other types of combustion or heat sources. Addi-
tionally, this test may flag potential daytime commission errors (false
alarms) associated with radiometrically bright urban features (e.g., hot
and reflective factory rooftops) and other unique structures such as
solar farms/photovoltaic stations, etc. We note that charcoal pits and
repeated piling of biomass for burning in designated areas may also be
flagged as persistent sources as a result of this test.

Pixels output by the daytime fire algorithm without a co-located
detection in the previous 176 days are further inspected to check for
the occurrence of high channel 7 reflectances persisting over time, an
indication of potential false alarm. We used channel 7 for this test due
g Landsat-8/OLI data, Remote Sensing of Environment (2015), http://
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to its strengths in separating vegetated and non-vegetated (e.g., bare
soil) surfaces, and reduced contamination by smoke (Asner & Lobell,
2000; Kaufman et al., 1997). The test assigns a bright surface class to
those pixels with ρ7;t N0:2, which describes the mean channel 7 reflec-
tance calculated using t co-located cloud-free pixels in the previous
176 days. This additional test is designed to flag pixels in areas dominat-
ed by urban environment or exposed soils that, under specific illumina-
tion conditions, can mimic the biomass-burning signature causing a
false alarm. Those targets may also be found in association with pixels
adjacent to persistent urban detections, where the increased distance
to the heat/high reflectivity source results in less frequentmanifestation
of reflectance anomalies.

The application of the multi-temporal analysis component is dem-
onstrated in Fig. 3, which shows an OLI image subset over eastern
China (path/row 119/41). Potential false alarms associated with radio-
metrically bright urban structures can be seen on the fire algorithm
output. Detailed visual inspection of those locations revealed factories
and other facilities consisting of large reflective rooftops and heat ex-
hausts. Application of the complementary multi-temporal analysis
tests to those pixels resulted in successful re-classification of all pixel
locations, setting them apart from actual biomass burning activity in
neighboring rural areas.
5. Theoretical fire detection envelope

Satellite fire data users are fundamentally interested in the resolving
power of new algorithms, in other words, what minimum fire size can
be typically detected? Effective quantification of satellite fire detection
performance using ground truth data can be challenging due to lack of
adequate reference data and, most importantly, because of the high
costs involved. Alternatively, theoretical calculation of detection curves
as a function of fire size and temperature provides useful information to
assess individual algorithms, and to compare between different fire
products.

Here we calculated the fire algorithm's day and nighttime detection
curves separately. The daytime fire detection curve calculation built on
Fig. 3. Subset of 07 August 2014 Landsat-8/OLI image of eastern China (path/row 119/41). Gre
shows pixels output by the fire algorithm; right panel shows the correspondingmulti-tempora
(For interpretation of the references to color in this figure legend, the reader is referred to the
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the approach of Schroeder, Oliva, Giglio, and Csiszar (2014), who
assessed the performance of the Suomi National Polar-orbiting Partner-
ship Visible Infrared ImagingRadiometer Suite (S-NPP/VIIRS) 375-mac-
tive fire detection algorithm using actual data. We selected 12 different
OLI images acquired globally, each representing a distinct geographic
area at times coincidingwith their respective active fire seasons. Fire ac-
tivity varied among individual scenes, ranging from as few as 79 pixels
(Northern Territory/Australia) to a maximum of 6561 pixels (Central
Siberian Plateau/Russia). For each scene, a total of 25 pixels were select-
ed across the entire domain. Pixel selection included areas adjacent to
active fires (simulating an extended fire line), clouds and water bodies,
subject to smoke plumes, and across awide range of vegetated and non-
vegetated areas (randomly sampled). Fires were then simulated on
those individual pixels by incorporating fire-emitted radiance to OLI's
primary channels 5, 6, and 7. Simulated pixel radiances were converted
back to scaled DN, and then to reflectance using the correspondingMTL
file parameters. Atmospheric attenuation effects were estimated using a
radiative transfer code (MODTRAN®) running on atmospheric profiles
derived from the National Oceanic and Atmospheric Administration
(NOAA) Global Forecast System (GFS) model analysis data for each
scene selected. Fire effective areas were varied between 1 and 150 m2

(1 m2 intervals), and mean temperatures were varied between 400
and 1200 K (10 K intervals). Simulated single-component fire radiances
were calculated with consideration to the fractional area coverage and
the spectral response function of each channel, and then added to the
selected pixel radiances. In order to ensure optimum representation of
observable conditions, all background pixels were preserved resulting
in realistic fire-affected synthetic images. These synthetic data were
processed using the daytime fire algorithm without any modification.
Fig. 4 shows the 50% probability of fire detection curve derived from
all 3.6 million data points resulting from the simulation scenarios
above. The curve shows a noticeable increase in fire detection per-
formance compared to other coarser spatial resolution fire data
products (e.g., S-NPP/VIIRS) (Schroeder et al., 2014), with typical
firewood combustion (950 K mean temperature) requiring ≈ 4
m2 of effective fire area to achieve greater than 50% chance of
detection.
en shades indicate vegetation, gray and magenta shades indicate urban areas. Left panel
l analysis result with all pixels re-classified as urban-related heat/highly reflective sources.
web version of this article.)
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Fig. 4. Theoretical probability offire detection calculated for the Landsat-8 algorithm. Day-
time (D) curve describes the 50% probability of detection (solid line), bounded by 10%
(bottom dotted line) and 90% (top dotted line) probability curves. The nighttime
(N) curve describes the fire area and temperature combination resulting in OLI channel
7 radiance greater than 1 W/(m2srμm).
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Our assessment of the nighttime probability of detection curve was
based on a simplistic approach involving direct calculation of fire-
emitted radiances from the same set of fire effective area and mean
temperatures described above. We assumed a near-zero and invariant
nighttime background radiance, which leaves the simulated fire-
emitted radiance as the only potential source influencing the resulting
pixel radiance. Similar to the daytime simulations, atmospheric attenu-
ation effects were estimated using MODTRAN® assuming a U.S. stan-
dard atmospheric profile. Fig. 4 shows the night curve describing the
fire area and temperature combination leading to a channel 7 radiance
of 1 W/(m2 sr μm), which would potentially allow for the fire pixel
detection. Compared to the daytime curve, nighttime data provide
enhanced response to smaller fires of similar temperature favored by
the exclusion of the reflected solar component. For example, the same
typical firewood combustion burning at ≈950 K may be detected
when effective fire areas as small as 1 m2 are observed.

The data simulations above did not account for the occurrence of op-
tically thin or thick clouds and smoke, or the pixel's spatial response
function. Therefore they describe a best-case scenario of fire detection,
which may be subject to partial or complete degradation depending
on the prevailing observation conditions.

6. Algorithm Assessment

Initial algorithm assessment was based on visual inspection of the
output fire pixel coordinates using publicly available data including
high spatial resolution imagery (e.g., aerial photography, high resolu-
tion commercial satellite imagery in Google Earth). The fidelity of the
fire detection data was qualitatively assessed by expert image analysts
over a wide range of fire conditions, including large/unambiguous and
well-documented biomass burning (e.g., boreal fires in Canada, wildfires
inwesternU.S.), variable size landmanagementfires (e.g., grasslandfires
inAfrica, conversionfires in the Amazon, agriculturalfires in India), small
point sources associatedwith knowngasflare locations (e.g., gas fracking
stations inNorthDakota/U.S., and oilfields in themiddle-east), and other
verifiable thermal anomalies such as active volcanoes.

The Landsat-8 fire algorithm performed well across the wide range
of conditions described above. Fig. 5 shows the daytime fire detections
produced for the 2014 King fire in California/U.S., corroborated by
same-day fire detections derived from 1-km Terra and Aqua MODIS
Thermal Anomalies (MOD14/MYD14), and 750 m and 375-m S-NPP/
VIIRS active fire data (Csiszar et al., 2014; Giglio, Descloitres, Justice, &
Kaufman, 2003; Schroeder et al., 2014). Those satellite images were ac-
quired sequentially, averaging 1-h separation between consecutive over-
passes. Overall, the different products showed good correspondence
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both in terms of fire front location and extent. Notably though,
Landsat-8 fire pixels provided a significantly more detailed mapping of
the flaming front describing areas of continuous activity on both east
andwestflanks of thefire, plus isolated heat islands inside the perimeter.
The formation of an optically thick pyrocumulus cloud at the northern
section (leading edge) of the fire perimeter had variable effects on the
fire products as it evolved throughout the day. Other areas dominated
by relatively dry smoke showed no noticeable effect on the OLI SWIR
reflectances and the corresponding fire detection performance (Supple-
mentary material).

Quantitative daytime commission error rates of the algorithm were
estimated for 13 different locations showing very distinct levels of fire
activity (Table 2). Processing of individual scenes included the main
fire algorithm and the complementary multi-temporal analysis proce-
dure described above. The number of usable scenes included in the tem-
poral analysis was dependent on cloud coverage. Argentina and north
India were particularly affected by cloud obscuration, with less than
five of the eleven possible scenes acquired in the previous 176 days
showing cloud-free data. Despite the smaller number of scenes used
in the multi-temporal analysis the algorithm was able to correctly
classify active fires, persistent thermal sources, and bright pixels with
zero or negligible commission error rate.

Six regions of markedly different fire characteristics showed a large
number (N 1000) of pixels detected, namely South Africa, Australia,
Brazil, Mexico, north India and Iraq. In South Africa and Australia, de-
tected pixels described large wildfires on each scene. Forest conversion
and pasturemaintenance fireswere found in Brazil, whereas agricultur-
al fires dominated the scenes in Mexico and north India. The scene in
Iraq overlapped with oil fields containing numerous gas flare stations.

Application of the multi-temporal analysis tests to the locations
above showing high land use related biomass burning activity andwild-
fires resulted in almost no change in pixel classification. The relatively
few cases of pixel re-classification were associated with surface coal
mines (Africa), and with urban structures and scarce vegetation pixels
in other areas. In comparison, application of themulti-temporal analysis
tests to the scene in Iraq produced significant changes resulting in
successful re-assignment of all gas flare pixels to the persistent source
class. Commission errors were negligible in all six regions.

The scene in China coincided with urbanized areas characterized by
large factories with highly reflective rooftops. The fire algorithm output
indicated 179 pixels of potential fire activity. Of those, 153 were re-
classified by the temporal analysis tests into either persistent source
(50%) or bright surface (50%). Of the remaining pixels (26), nine were
also coincident with other factories and urban structures indicative of
potential false alarms resulting in the highest relative false alarm rate
of 34.6%. Indonesiawas the region showing the second highest commis-
sion error rate. In that case, 65 pixels were output by the fire algorithm
and only three were subsequently re-classified by the temporal analysis
tests. Of the 62 remaining pixels, 10 pixels were co-located with an
industrial park and therefore considered potential false alarms. Pixels
associatedwith potential false alarms consisted predominantly of single
detections (52%) and small clusters of two adjacent detections (32%).
The largest single cluster associated with potential false alarm
showed six contiguous pixels overlapping a large industrial complex
in Indonesia. Overall, global daytime commission error rate was
equivalent to 0.2%.

Complementing the daytime fire algorithm assessment, Fig. 6 shows
the fire detections produced for the nighttime OLI image (path/row
127/217 ascending node) acquired on 04 February 2014 over part of
North Dakota/U.S. Numerous gas fracking sites are evident in the high
resolution image of that area, all characterized by small land clearings.
By zooming into individual sites, we could co-locate all fire pixel detec-
tions with discernable gas flare stacks on the reference imagery. With
the exception of one undetected location with a channel 7 radiance of
0.55 W/(m2 sr μm), other fracking sites in the image subset showed
no discernible heat signatures from the background. We assumed the
g Landsat-8/OLI data, Remote Sensing of Environment (2015), http://
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Fig. 5.Multi-sensor imaging of the King fire in California/U.S. on 19 September 2014. Active fire detections derived from Terra/MODIS 1 km, Landsat-8/OLI 30m (path/row 43/33), S-NPP/
VIIRS 375 m and 750 m, and Aqua/MODIS 1 km are marked in yellow. Temporal separation between consecutive images was limited to approximately 1 h. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)
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gasflares in those areas could be temporarily out of service or else burn-
ing at a much reduced combustion rate relative to their neighbors,
therefore falling below the sensor's minimum resolvable radiance
range. This and other regions inspected showed no evidence of false
Please cite this article as: Schroeder, W., et al., Active fire detection usin
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alarms. As a result, we concluded that nighttime commission errors
were negligible. Because of the limited number of nighttime scenes
available, we could not assess the effect of the multi-temporal analysis
tests in those cases.
g Landsat-8/OLI data, Remote Sensing of Environment (2015), http://
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Table 2
Description of Landsat-8fire algorithmvalidation results according to scene location and acquisition date, number of previously acquired scenes used in themulti-temporal analysis, num-
ber of pixels output by fire algorithm, number of pixels re-classified as a result of multi-temporal analysis, and estimated commission error rates. The latter describe the percentage of fire
algorithm output pixels that were found to be associated with urban pixels (e.g., factories), after exclusion of pixels re-classified by the multi-temporal analysis.

Region Path/row Date (dd/mm/yy) Number of usable scenes Fire algorithm output pixels Pixels re-classified
(temporal analysis)

Commission Error (%)

Italy 188/034 23/06/14 10 176 3 1.2
Brazil 227/069 24/06/14 9 355 2 0.0
Brazil 226/069 20/08/14 6 1714 1 0.0
Mexico 026/048 18/06/14 9 1345 6 0.0
USA 023/034 18/05/14 7 27 3 4.8
Australia 105/069 05/08/14 8 3533 0 0.0
Indonesia 127/060 14/06/14 8 65 3 16.1
India (north) 147/040 07/05/14 4 4737 73 0.1
India (south) 143/052 24/03/14 6 444 23 1.7
Argentina 229/085 29/01/14 3 184 1 0.0
Iraq 166/039 19/10/14 9 1400 1289 0.0
South Africa 168/077 15/09/14 10 7154 3 0.0
China 119/041 07/08/14 9 179 153 34.6
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6.1. Field verification

Data from twofield experimentswere also used in support of thefire
algorithm assessment. On both occasions, a small plot consistingmostly
of firewood arranged in a rectangular fuel bed was set up in a rural area
and sampled using ground instrumentation. The first experiment
(Exp1)was coordinated by theGermanAerospace Center (DLR) and im-
plemented on 17 August 2013 near Demmin/Germany. The burn plot
measured 11 × 13 m2 and was actively burning during the Landsat-8
overpass (path/row 194/22) at 10:10 UTC. The approximate mean fire
temperature estimated using a handheld Heitronics thermal sensor
was equivalent to 970 K. The second experiment (Exp2) was coordinat-
ed by theBrazilian Institute for SpaceResearch (INPE) and implemented
on 19 January 2015 near Cachoeira Paulista/Brazil. A smaller burn plot
measuring 3 × 10m2was sampled using two uncooled thermal infrared
FLIR cameras mounted on tripods positioned adjacent to the fire, plus a
dual-band radiometer attached to a 5m tower at a 45° viewing angle. At
the time of the Landsat-8 overpass (path/row 218/076) at 12:58 UTC
the fire was actively burning with a temperature of 870 ± 153 K.

Based on the fire characteristics describing the experimental plots
above and the theoretical detection envelope calculated for the
Landsat-8 fire algorithm in Section 5, both sites had high probability of
Fig. 6. Subset of the fire detection algorithm output (red polygons) derived from the 04
February 2014 Landsat-8/OLI nighttime scene path/row 127/217 (ascending node) over
part of North Dakota/U.S. Background image shows 1 m resolution true-color composite
aerial photography data acquired in July–August 2014 by the U.S. Department of Agricul-
ture National Agriculture Imagery Program. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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detection. Processing of the two scenes using the fire algorithm and
the temporal analysis tests resulted in two confirmed fire detection
pixels overlapping each of the experimental plots. Fig. 7 shows the
two experimental plots and the corresponding channel 7 radiance
data subset, plus the resulting fire algorithm output with detection
pixels marked in black. The maximum observed radiance on channel 7
was equivalent to 27.33 and 24.66 W/(m2 sr μm) in Exp1 and Exp2, re-
spectively. Consequently, both fires exceeded the nominal channel 7
saturation value. In comparison, the adjacent fire-free pixels showed a
mean radiance of 2.32 and 3.23 W/(m2 sr μm) for Exp1 and Exp2,
respectively.

Additional pixels of elevated radiance on channel 7 bordered the
two detections on each scene. We attributed those above-background
radiance values to smearing caused by the geometric transformations
used to convert the OLI Level 1R image (a 2D space consisting of
image sample/line) to the Level 1 T data (an implicit 3D space consisting
of x/y/z projection coordinates), which accounts for the detectors'
spatial response, observation geometry (line-of-sight), terrain (digital
elevation model), and pixel spatial interpolation method (cubic
convolution) used to produce the output resampled data in Universal
Transverse Mercator (UTM) projection (U.S. Department of the
Interior – U.S. Geological Survey, 2013). Stray light effects may also
contribute to the observed smearing (Morfitt et al., 2015). Such data
artifact was systematically observed over fires corresponding to small/
point sources such as gas flares occurring in both day and nighttime
images. Nonetheless we expect smearing to equally affect larger fires.
In fact, visual inspection of training and validation data frequently
showed pixels of intermediate (above-background) radiance values
adjacent to pixels classified as fires. Those locations were classified as
fire-free pixels by our detectionmethodology and not considered omis-
sion errors. Additional validation analyses usinghigh resolution (≈1m)
reference fire data are needed to further corroborate the current results.

7. Conclusions

The biomass burning science and data user community have for
many years relied on coarser spatial resolution (≥1 km) satellite data
to map and monitor fire-affected areas. Current operational satellite-
based active fire detection systems provide routine observations of
global fire activity, serving as input to a wide range of science applica-
tions, air quality monitoring, and strategic fire management. However,
the lack of spatial fidelity typical of those satellite active fire products
remains a major limitation preventing their application in landscape
analyses and tactical fire management.

The ever-growing number of high and moderate spatial resolution
earth observation systems, including Landsat-class instruments, is
poised to change that reality. The launch in 2013 of Landsat-8 added
g Landsat-8/OLI data, Remote Sensing of Environment (2015), http://
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Fig. 7. Experimental fires used in support of Landsat-8 fire algorithm verification. The two rows show photos of the sites (left panels), and the OLI channel 7 image subset of the areawith
fire pixelsmarked in black (right panels). Toppanels describe the 11× 13m2 plot nearDemmin/Germany (53.9276°N 13.0587°E) on 17 August 2013; bottompanels describe the 3× 10m2

plot near Cachoeira Paulista/Brazil (22.6868°S 44.9844°W) on 19 January 2015. (For interpretation of the references to color in thisfigure legend, the reader is referred to theweb version of
this article.)
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to the existing network of science-quality moderate spatial resolution
sensors; the ongoing planning and designing of the follow up Landsat-
9 system could further extend the Landsat time series into the next
decade. Most importantly, the comparatively recent shift towards an
open data policy helped catapult the use of Landsat data among various
science applications, including biomass burning. Complemented by
other missions of similar scope (e.g., ESA/Sentinel-2), these emerging
orbital systems have the potential to transform the way satellite data
are used in support offire science andmanagement applications. Collec-
tively, the integration of all available Landsat-class instruments in the
near future could provide satellite-based spatially refined fire detection
data at a temporal resolution frequent enough to support operational
tactical fire management, adding to fire incident teams' limited array
of spatially-explicit fire perimeter information.

Building on these new capabilities, we presented a new active fire
algorithm using Landsat-8/OLI day and nighttime input data. Themeth-
odology expands on previous algorithms proposed for ASTER and
Landsat-7/ETM+, incorporating additional visible and near-infrared
channel data and a multi-temporal analysis scheme. Detailed analyses
of the input OLI data indicated frequent saturation of fire-affected pixels
on the fire-sensitive SWIR channel 7, and to a lesser extent of the NIR
channel 6 data. Under more extreme conditions involving large or
high intensity fires, channel 7 saturationwas greatly exceeded resulting
in radiometric artifacts associated with the folding of the pixel's digital
Please cite this article as: Schroeder, W., et al., Active fire detection usin
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number. In addition, visual inspection of the data corroborated by field
verification indicated potential smearing of the fire-emitted radiance
across adjacent pixels. We attributed the smearing effect to the resam-
pling procedure involved in the production of the Level 1 T data files,
and to residual stray light effects.

Despite those unique input data features, our assessment of the out-
put fire classification data indicated good overall quality across a wide
range of fire conditions observed in both day and nighttime imagery.
Small and large-size biomass burning fires were successfully resolved,
along with gas flares and active volcanoes. The high quality of the
Level 1 T geolocation data provided improved co-location of pixels
acquired onmultiple dates enabling the post-processing of the fire algo-
rithm output for persistent heat anomalies, and separation of potential
false alarms. Overall commission errors were low, averaging 0.2%
globally. Theoretical calculation of fire detection envelopes suggested
significant improvement in performance compared to existing coarser
spatial resolution fire products. Field verification data corroborated
our theoretical assessment.

The spatially-refined active fire detection data provided by Landsat-
class sensors create new opportunities and challenges for the user and
science communities. Thanks to the improved fire line resolving capa-
bilities, pixel-based analyses could be replaced by cluster-based applica-
tion of the data where contiguous pixels are labeled accordingly and
used to describe individual fire events. Such data application could
g Landsat-8/OLI data, Remote Sensing of Environment (2015), http://
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also lead to revised product assessment metrics describing omission
and commission error rates based on clustering analyses. Detailed
validation of these data remains a challenge as reference fire data
sources are scarce and costly to acquire, currently demanding
exhaustive image interpretation by expert image analysts. Future al-
gorithm assessment should build on new complementary data sets
(e.g., high resolution urban maps to identify potential false alarms
over highly reflective buildings) and improved fire detection data
simulation corroborated by field data acquired using new lower
cost technologies (e.g., drones).

The increased availability of Landsat-class active fire data is fostering
the development of new applications focused on landscape-scale analy-
ses, including fire growth assessment, fire data assimilation into
cutting-edge coupled weather-fire models, and tactical fire manage-
ment, among others. In order to further maximize time-sensitive disas-
ter monitoring applications, mission requirements should enable near
real-time processing and distribution of the data. The global sampling
strategy should also include comprehensive and systematic nighttime
acquisitions of shortwave and thermal infrared data that can be used
to more frequently track the progress of thermal anomalies.

The proposed algorithm was implemented at the USDA Remote
Sensing Applications Center in Salt Lake City/UT, where it serves the
U.S. fire management community. This and other Landsat-class active
fire algorithmswill continue to be developed and further refined. Future
development of a fire disturbance essential climate variable will be pur-
sued, complementing other satellite fire data sets in support of land-
science applications.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2015.08.032.
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