Multi-objective calibration of a hydrological model using satellite-based data and ground data for improved drought management in a poorly gauged Mekong River basin

Tien Le Thuy Du¹, Hyongki Lee¹, Duong Du Bui², Isberg Kristina³, Susantha Jayasinghe^{4,5}, Senaka Basnayake^{4,5}, Farrukh Chistie^{4,5}

¹ Department of Civil & Environmental Engineering, University of Houston, Houston, TX, USA

² National Center for Water Resources Planning and Investigation, Hanoi, Vietnam

³ Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

⁴Asian Disaster Preparedness Centre, Bangkok, Thailand

⁵ SERVIR-Mekong, Bangkok, Thailand

AGU 2018 Fall Meeting: GC23C-10

Dry spells on 25 August 2015 Drought value calculated by RDCYIS High : 23

Image credit: ADPC/ This map generated from SERVIR-Mekong's Regional Drought and Crop Yield Information System shows dry spell areas throughout Vietnam during the drought of 2015. Insufficient streamflow causes salmity intrusion -> Lack of surface water for water supply plant in Danang, 2018 Image Credit: CADN Media, 2018

Dening?

story

ied ovince.

Massive coffee fields have been abandoned because of water shortage for irrigation in Gia Lai in 2015. Image Credit: Tintuc Media, 2015

Insufficient streamflow causes salinity intrusion -> Lack of surface water for water supply plant in Danang, 2018. Graph credit: DISED, 2016

Background

FIGURE 2 | Scheme representing different categories of drought and their development. (Derived from Peters, ⁵³ Van Loon, ⁵⁴ Stahl⁵⁵).

Research Questions

- Drought was a recurring disaster in the region, causing significantly high socioeconomic cost to the local people.
- The area lacks a comprehensive and practical drought monitoring network.
- The study aims to answer
- (1) What causes drought and how to quantify drought in the region?
- (2) Is there an alternative water source in response to drought?

Proposed research Framework

Research steps

Step 1 Research Results

Figure 8. Number of drought months identified by six VIs at different locations.

Finding:

Du et al., 2018

- No consistent index and method for all drought types
- Less studies linking different drought types in real cases.

							\frown					
	SPHY	TOPKAPI- ETH	SWAT	VIC	LIS- FLOOD	SWIM	НҮРЕ	mHM	MIKE- SHE	PCRGLOB- WB	GEO- top	
Processes integrated	-							1				
Rainfall–runoff	+	+	+	+	+	+	+	+	+	+	+	
Evapotranspiration	+	+	+	+	+	+	+	+	+	+	+	
Dynamic vegetation growth	+	-	+	+	+	+	а	NA	+	+	-	
Unsaturated zone	+	+	+	+	+	+	+	+	+	+	+	
Groundwater	+	_	+	+	+	+	+	+	+	+	+	
Glaciers	+	+	_	_	_	+	+	-	_	_	+	
Snow	+	+	+	+	+	+	+	+	+	+	+	
Routing	+	+	+	+	+	+	+	+	+	+	+	
Lakes incorporated	+	_	+	+	+	+	+	NA	+	+	_	
into routing scheme												
Reservoir management	-	-	+	_	-	+	+	NA	_	+	_	
Field of application												
Climate change impacts	+	+	+	+	+	+	+	+	+	+	+	
Land use change impacts	+	+	+	+	+	+	+	+	+	+	+	
Irrigation planning	+	_	+	+	_	+	+	-	+	_	+	
Floods	-	_	_	_	с	-	+	-	+	+	+	
Droughts	+	+	+	+	+	+	+	+	+	+	+	
Water supply and demand	-	_	+	_	_	-	+	NA	_	_	_	Terink

Step 2 Research Results: Setting up the model

No	Variables	Detail /resolution	Data source					
1	Topography and routing	15 arc-second	Hydrosheds (Lehner et al., 2008) and Hydro 1K (<u>USGS</u>)					
2	Land cover	300 m	ESA Clmate Change Initiative – Land Cover project (<u>ESA, 2017</u>)					
3	Soil	30 arc second	Harmonized World Soil Database					
3	Lakes		Global Lake and Wetland Database 1.1 (GLWD) (Lehner and Döll, 2004)					
4	Reservoirs and dams		Global Reservoir and Dam database v 1.1 (GRanD) (Lehner et al., 2011)					
5	Temperature	0.5 degree, daily	HydroGFD (from Climate prediction Center, CPCtemp, 2018) (Berg et al., 2018)					
6	Precipitation	0.5 degree, daily	HydroGFD (from GPCCv7 and CPC) (Berg et al., 2018)					
7	River discharge (in-situ)	30 stations	Mekong River Commission (MRC) and National Centre for Hydro-Meteorological Forecasting (NCHMF)					
8	Total Water Storage change	>150,000 km ²	NASA's Gravity Recovery and Climate Experiment (GRACE)					
9	Water level		Envisat, Jason 2, Jason 3, Sentinel 3A					
10	Aquifer		National Center for Water Planning and Investigation (NAWAPI) and International Groundwater Resources Assessment Centre (IGRAC)					

Step 2 Research Results: Testing drought impact mapping concept

Step 2 Research Results: Testing drought impact mapping concept

Step 2 Research Results: Testing drought impact mapping concept

Step 3 Preliminary research results: Calibrating model in Mekong river basin

Station Name	NSE value for discharge Calibration period 1997 – 2002	NSE value for discharge Validation period 2003 – 2007			
Chiang Saen	0.407	0.405			
Luang Prabang	0.561	0.573			
Chiang Khan	0.557	0.626			
Vientiane	0.519	0.64			
Nong Khai	0.585	0.686			
Nakhon Phanom	0.704	0.507			
Thakhek	0.691	0.503			
Mukdahan	0.719	0.608			
Khong Chiam	0.74	0.66			
Pakse	0.716	0.744			
Station Name	NSE value for water level Calibration period 1997 – 2002	NSE value for water level Validation period 2003 – 2007			
Nong Khai	0.749	0.712			
Nakhon Phanom	0.706	0.718			
Thakhek	0.697	0.736			
Khong Chiam	0.79	0.79			
Pakse	0.73	0.772			

Step 3 Preliminary research results: Calibrating model in Mekong river basin

Khong Chiam Station

Step 3 Next research steps: Using Altimetry-based water level and reconstructed discharge for supporting existing observation data

GC31K-1384: Deriving Daily Discharges from Satellite Radar Altimetry and Ensemble Learning Regression in Poorly Gauged River Basins 12th December, 2018 (8-12.20 AM), Poster Hall. Presented by Donghwan Kim

Conclusion and outlook

- It is essential to understand and address drought problems in this important drought-prone region.
- The selected hydrological tool is applicable for multi-basin and multiobjective calibration, thus better simulation of all water components.
- Drought impact mapping method is successful to understand what drought, how, when and where drought happened in selected river basin.
- Remote sensing and open source data will be very useful for this poorly gauged river basin to supplement scarce ground data.
- Continue to calibrate model using remote sensing data (altimetry and GRACE) and map drought impact and responses in the region.

Thank you for your attention

For more information, please contact

Tien Du Idu9@uh.edu