

Wildland Fire Data Logistics Network (WildfireDLN) An Implementation of Resilient Networking

Presented by Nancy French

Spring TFRSAC 2018, NASA Ames Research Center 10 May 2018

Project Leads: Nancy HF French, Pl Michigan Tech Research Institute D Martin Swany Indiana University Micah Beck University of Tennessee, Knoxville

INDIANA UNIVERSITY

JWUIQhioam J

Research Institute

NIST PSCR Program

https://www.nist.gov/ctl/pscr/about-pscr

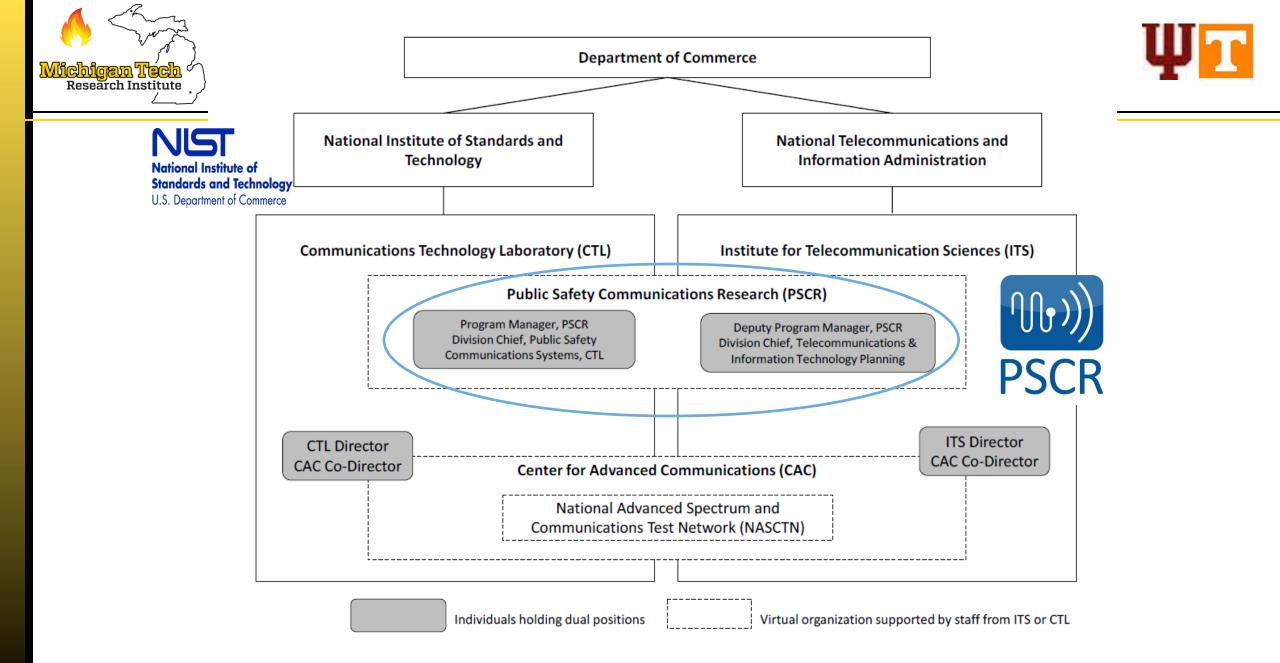


FIGURE P.1 The Boulder telecommunications laboratories.

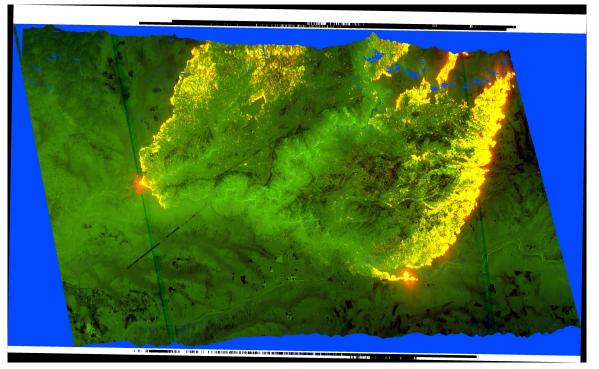
Problem Statement

Wildland firefighting operations face challenges due to:

- Network coverage
- Data portability
- As a result, incident command decisions and wildfire containment are delayed, possibly contributing to:
- Human illness & injury, including deaths
- Environmental impacts
- Property damages

Above: Incident Command morning briefing (National Park Service Photo)

Left: Excessive post-fire erosion from the Hayman Fire (Photo by Mary Ellen Miller)


Project Motivation

Problem: Access to large, high-value data files can be limited in different ways.

Users experience:

- Transfer of large data (e.g. satellite imagery, video) is slow
 - Insufficient bandwidth
 - Manual process
- Transfer large data is not possible
 - Insufficient bandwidth/storage
- All data transfers are not possible
 - limited/no connectivity due to:
 - Infrastructure damage
 - Power limitations
 - Insufficient cell tower coverage

Above: NIROPS image of the King Fire in Pollock Pines, CA.

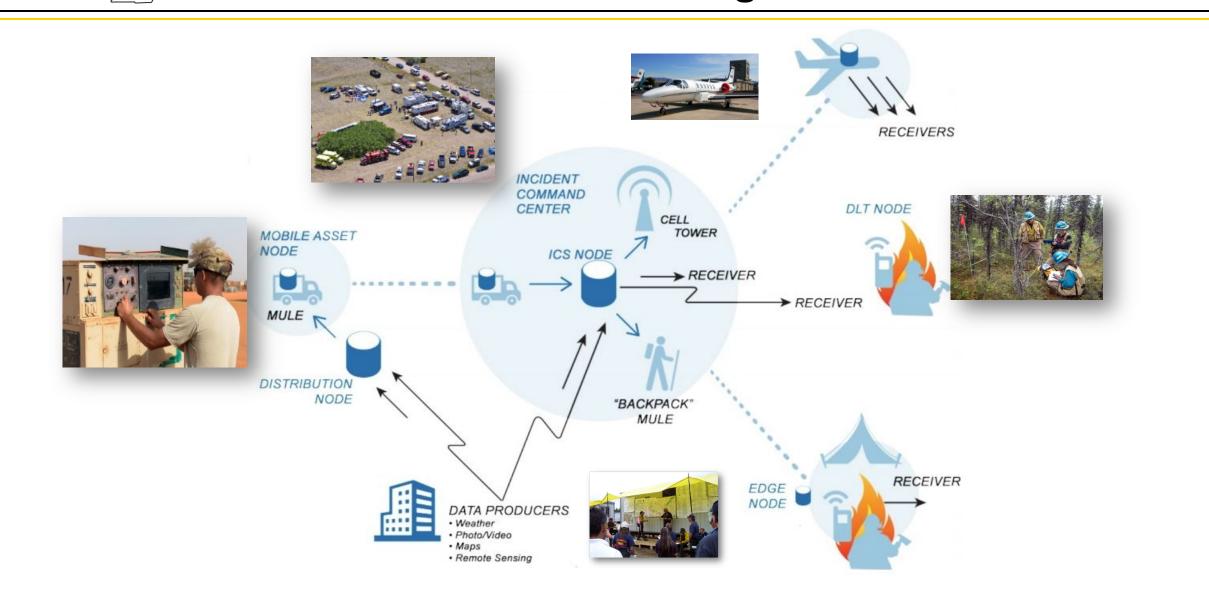
Spaceborne & airborne systems routinely provide large data for decision support.

Solution

Solution: Develop software tools for data logistics based on existing resources, including future proofing.

Deploy and test a prototype hardwaresoftware system that:

- Demonstrates automated data ferrying with seamless user experience
- Integrates the new data sharing system with existing capabilities and relevant data.


Design and develop an asynchronous and heterogeneous data system.

System Overview The Wildland-fire Data Logistics Network

ichigan Tech Research Institute

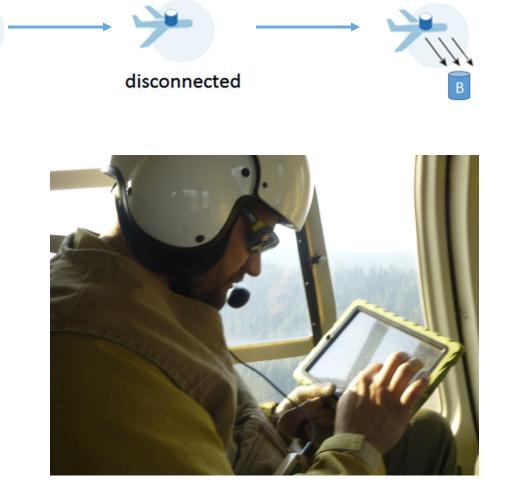
Data Ferrying - now

Limitations of existing solution:

- Manual
 - Physical transport
 - o Manual data manipulation
- Swapping iPads in the field (as opposed to transferring data)
- Connecting cables and wires
- "Namespace integration"
 - Where to place/store/recover files -> requires consistency
- Data corruption during transfer
 - o Incomplete downloads

Amazon Web Services Snowmobile data ferry (100PB capacity)

IPads must be manually swapped or synced in the field (32GB – 128GB)

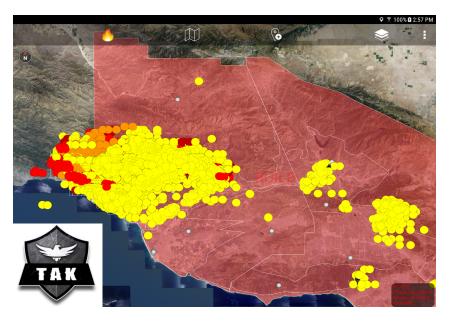


WildfireDLN :

Research Institute

- High-performance wireless
 - Low-power signaling
 - To turn on the high-speed wireless when needed (for power conservation)
- Automated/integrated connectivity
 - o "Always there with delay"
 - But delay is ok! -> (e.g. text messaging)
 - We think of it as always there and peer-to-peer
 - But it is in fact delayed and serverbased

The key: seamless user experience


User Experience

Improving user experience is a fundamental project goal.

- Fully automated transfer of data
 - Detection of corruption
 - Re-transmission
 - View-consistency
- ATAK interface
 - Fully developed
 - User-tested
 - Flexible for development
- Potential for two-way data sharing (duplex communication)

Ferry build	Mobile build
Raspberry Pi 3-based ferry servers	Mobile integration with Android frontend
4G LTE or 801.11 WiFi communications	4G LTE, 802.11, FirstNet connectivity

System Architecture

Web-dlt

User facing web page

IDMS

• Data manager

Periscope

 Metadata storage database

IBP

Block data storage

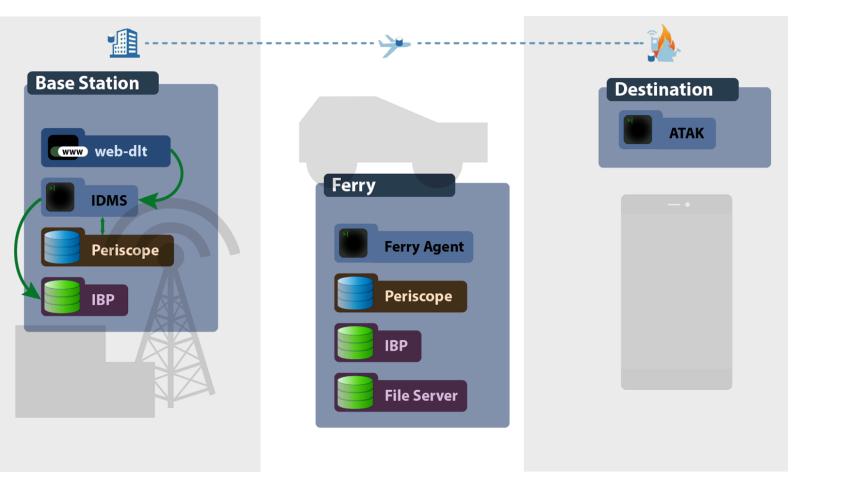
File Server

 Web Mapping Service (WMS)

ATAK

Mobile data client

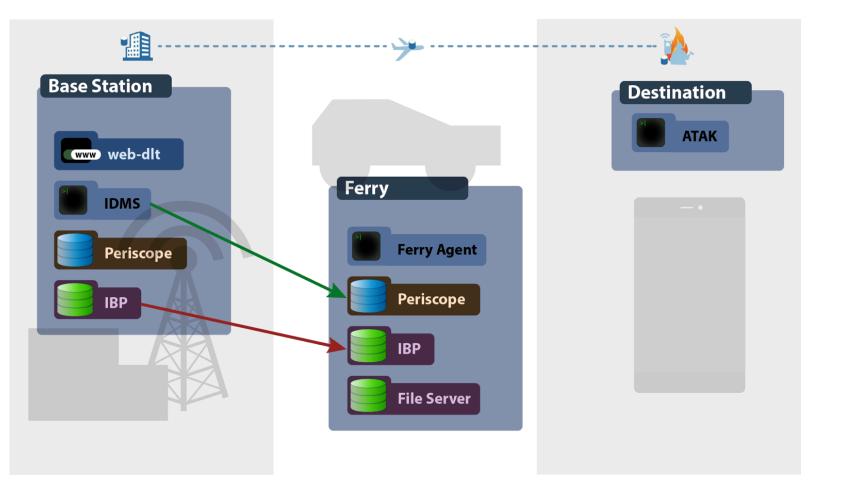
<u></u>	→	•
Base Station		Destination
web-dlt		АТАК
IDMS	Ferry	-•
Periscope	Ferry Agent	
ІВР	Periscope	
	IBP	
	File Server	


Data Request

Coordinator selects file to be sent to specified locations using the web-dlt webpage.

IDMS prepares the data for distribution:

- Records the request for bookkeeping.
- Uploads the data to IBP, possibly from distant networked sources.



Data Transfer

After IDMS detects a ferry bound toward the destination:

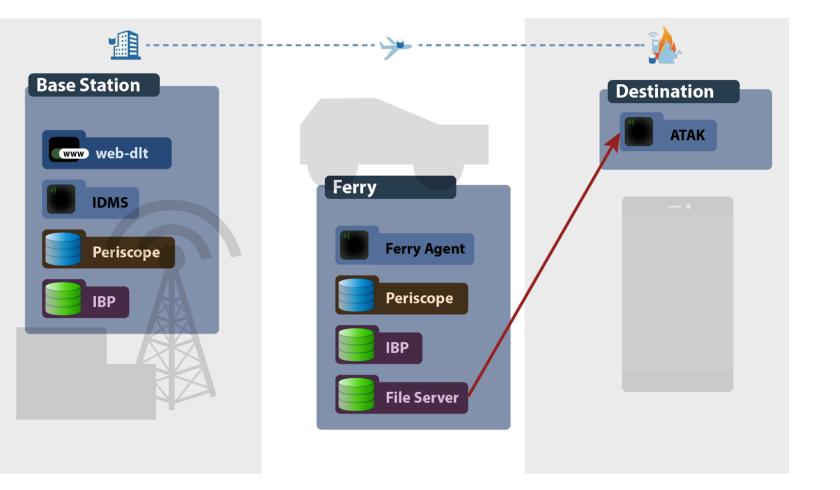
- IDMS records the transaction onto the ferry.
- IBP transfers the data onto the ferry.

Ferry Enroute

While the ferry travels:

- The ferry agent downloads all data placed into IBP into a local file server.
- File server is available for external downloads.

·····	≁	🏊
Base Station		Destination
www web-dlt		АТАК
IDMS	Ferry	
Periscope	Ferry Agent	
IBP	Periscope	
	IBP	
	File Server	



ATAK Download

When the destination detects the ferry's local WiFi:

 ATAK automatically downloads all new files available on the ferry's file server.

Deploy and test prototype hardware-software system with fire operations personnel that integrates the new data sharing system with existing capabilities and relevant data.

State of Colorado Center of Excellence for Advanced Technology Aerial Firefighting (CoE):

- Development of ATAK-based data access
- Improve current workflow for firefighters to access relevant geospatial data

COLORADO

Center of Excellence for Advanced Technology Aerial Firefighting

Department of Public Safety

National Interagency Fire Center (NIFC):

- Develop an intelligent data ferrying system
- Improve current methods of moving large data to on-site systems

How can fire community help?

- Define requirements of an enhanced data sharing capability
- Provide resources for prototype development
- Engage in testing and evaluation of prototype and future system characteristics

Vision for the WildfireDLN

Current Scenario	DLN Vision
Moving files to the IC from outside the Fire operation Mobile LTE networks Courier 	High-bandwidth access to a geographically optimized, resilient network of data depots (prototype network in place)
Moving files (to the IC from) within a disconnected fire operation • Cell on wheels • Mesh radios • Courier	Wireless (802.11 or LTE) access to a self-organizing network of transient/mobile nodes
 Standardized data access across frontend clients EGP (Desktop) ATAK (Mobile) 	Integrating with existing systems to improve edge-access; ie no latency from waiting for backpropagation of data to centralized servers
Offloading aerial data Aircell Couriers 	Download resiliency in speed and disrupt-tolerance
 Backhauling disconnected IC operation record Mobile LTE / Cell on wheels Courier 	Intermittent updates where possible; less redundancy when connectivity is (re)established

Project Goal & Impact

National Institute of

Standards and Technology PSCR

Project Goal:

To deliver rich and informative data with a robust system that supports file transfer and access across disconnected, heterogeneous networks.

Enhance and extend current operational data sharing capabilities for:

- Improved firefighter and public safety
- Better wildland fire predictions
- More informed fire operations (wildfire and prescribed fires)

PSCR Vision:

Public safety services and mission critical systems will be able to function properly in situations of poor network connectivity due to natural interference or infrastructural faults.

Above: The Yarnell Fire began on Jun. 28, 2013, 1.5 miles from Yarnell, AZ from a lightning strike.