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The NASA Earth eXchange (NEX)

The NASA Earth eXchange (NEX, https://nex.nasa.gov) provides a collaboration and
knowledge-sharing platform for the Earth science community housed at Ames Research
Center.

OpenNEX is part of NEX as
its public cloud infrastructure
portal, hosted on the

Amazon Web Services (AWS)
cloud for public accessibility.

Over the past five years, NEX
team supported over 100
NASA-funded researchers.




Himawari 8 AHI and GOES-16 ABI

Wave length Spatial
[um] Band | resolution

number | at SSP
[km]
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2 1

3 05
4 1
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133 16 2

Himawari 8 AHI fullDisk
launched October 7, 2014
Himawari 9: November 2, 2016

Himawari-8/9

Central wave length
[um]

AHL8 AHL9
(Himawari-8) | (Himawari-9)
047063 047059
051000 050993
063914 063972
085670 085668
16101 1.6065
22568 22570
38853 38289
62429 62479
69410 69555
7.3467 73437
8.5926 8.5936
96372 9.6274
10.4073 10.4074
11.2395 11.2080
123806 123648
132807 133107

GOES-16 ABI fullDisk
launched November 19, 2016
GOES-17 March 1, 2018
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« 0, is the solar zenith angle

« o is the solar elevation angle, as = 90° — 6
Sunrise « h is the hour angle, in the local solar time.

« 4 is the current declination of the Sun

« & is the local latitude.

- J
Y

Flowchar for GOES-R Ad d Baseline Imager Prc ing



. S ©Nex
How will the GOES ABI characterize fires?

Fire properties can be characterized in three ways:
instantaneous fire size, instantaneous fire temperature and
fire radiative power (FRP).
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Fires produce a stronger signal in the midwave IR bands
(around 4 microns) than they do in the longwave IR bands
(such as 11 microns). That differential response forms the
basis for most Fire Detection and Characterization (FDC)
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performance seen with previous GOES satellite sensors.
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Wildfire Detection Algorithm (AHI-FSA)
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Development of a Multi-Spatial Resolution
Approach to the Surveillance of Active Fire Lines
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Archived Fire-event dataset for Machine Learning

= s rayene
solem National Forest

2017 Statewide Fire Map Q

102,439,275 views
SHARE

[J December 2017

November 2017
© Bitterwater Fire
© Chris Fire
© Roser Fire
@ Palm Fire

[0  October 2017

September 2017

v &£y Canyon Fire Perimeter
© BerryFire
£y Berry Fire Perimeter
© Lakewood Fire

... 62 more

August 2017

v © W-2Fire

O R4 Fire
£y R-4 Fire Perimeter
© Railroad Fire
... 70 more
+
O  Juy2017 I
- Map data 62018 Google, INEGI_Terms_50mi

California Statewide Fire Map
http://www.fire.ca.gov/general/firemaps

La Tuna Fire, Verdugo Mountains
Los Angeles, CA, Sep 1st - Sep 7th, 2017



@ RNEX

NEX-MATA Intelligent assistants

NEX-MATA is an integration of the Speech Recognition (SR), Natural
Language Processing (NLP), and Machine Learning (ML) into an intelligent
assistant, helping Earth scientists and citizens access the GOES fire

database in a conversation-like interface.
Workflows/APIs

‘ LANCE H Earth Observatory ]
(Fire..) (Floods)

. \ Giovanni NDVI Anomaly ]

[ Giovanni NDVI Trends ]

User Requests

Capabilities
Fire services, Flood services, Drought services
Climate Trends/Anomaly services

Language Interpreter

EO Catalog
[\ VA AN LARTH SCIENCE DATA OPERATIONS
Conversation- EO Datasets NTn:
Powered Assistant =
Field Campaigns |2

Data-Compute

Interactive
Web Map
Formatted Qucﬁtlon
state in the
Answer
context
Notification
Response/Action

(EOSDIS/NEX/OpenNEX)

S MATA

Click the "Speak Your Request" button to provide your question.

i
Ak Oz
MATA

am stopped...as you have finished.

"You can view these locations in the map."

This fire had lasted, o
Fire startedon 11 Tr‘ fi
Fire

d lasted for 1 days
ed on 11242017

"

This fire had lasted for 1 days
Fire started on 11242017

Conversation

Question: where? p /—~_———/Y

Answer: There are 27 fires.
Question: how many?
Answer: Yes.

Question: were there any fires burning 14 days
ago in California?
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Summary

Thank You!

e Real-time GOES-16 data can improve the timeliness of fire
behavioral data.
e GEONEX has laid the groundwork for real-time wildfire monitoring

on a public cloud.
e Using the denser temporal data available from GOES to track the

status of pixels such as non-fire, fire, and burnt area, could reduce
false detection rates seen from polar-orbiting data sources.

Contact Information:
Jun Xiong
jun.xiong@nasa.gov
Ramakrishna Nemani
rama.nemani@nasa.gov
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GEONEX Real Time Pipeline

1. GEONEX is a real-time pipeline deployed on OpenNEX to process geostationary datasets
such as those from GOES-16 and Himawari into higher level products. Planned products
include TOA, SR, LAI, NDVI, GPP and Fire.

2. The real-time feed and full historical archive of original resolution Advanced Baseline Imager
(ABI) radiance data (Level 1b) and full resolution Cloud and Moisture Imager (CMI) products
(Level 2) are added into AWS as soon as they’re available (netCDF4 format).

3. GEONEX, a real-time pipeline prototype to convert ABI data from radiance data into top-of-the
atmosphere (TOA) reflectance and surface reflectance (SR) outputs for advanced detection.
Himawari-8 (AHI) data were processed following similar steps.

4. GEONEX is designed as a real-time processing chain, deployed both on the AWS cloud as
well as on the NAS supercomputer at NASA Ames.



WF-ABBA (CIMSS)

Remote Sensing of Environment
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On timeliness and accuracy of wildfire detection by the GOES
WEF-ABBA algorithm over California during the 2006 fire season
Alexander Koltunov 2 2 &, Susan L. Ustin 2, Elaine M. Prins ©
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Abstract

The Wildfire Automated Biomass Burning Algorithm (WF-ABBA) is a state-of-the-art
algorithm for geostationary wildfire detection whose results have been increasingly used in a
range of environmental applications. At present, the WF-ABBA validation activities and, in
general, fire product validation methodologies are at a markedly less advanced stage than
the algorithm itself. Particularly, little is known about detection timeliness, despite the value
of such information for assessing the potential of geostationary observations to improve
tactical decision making of first responders. This paper contributes to reducing this gap in
two ways. Firstly, we describe a new methodology that is suitable for evaluating
geostationary satellite wildfire detection in terms of incidents with regard to both timeliness
and reliability. This methodology utilizes available official multi-agency wildfire reporting
information and multitemporal Landsat imagery. Secondly, we apply the proposed validation
method to temporally filtered GOES-West WF-ABBA (ver. 6.1) detections for the 2006 fire
season over the State of California and present incident-wise and pixel-wise performance
information. The results indicate highly reliable pixel-wise performance of WF-ABBA, with
about 75% of fire pixels (or more) corresponding to actual recorded active wildfires. A
substantial portion of wildfires were detected during their first hour of activity, and a few
incidents—even before the initial reports from conventional sources. Although the WF-ABBA
performs best at what it was designed for: istently re-di (monitoring) active fires,
we believe there is an additional potential for automated detection from current
geostationary data to reduce wildfire ignition latencies in the Western U.S. Our results can
serve as a guideline for i developers and users of the WF-ABBA fire product.
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