Utilizing NASA Earth Observations to Evaluate Urban Tree Canopy and Land Surface Temperature for Green Infrastructure Development and Urban Heat Mitigation in Huntsville, AL

Greta Paris, Sabine Nix, Thomas Quintero, Amanda Tomlinson

November 24, 2020
Project Overview

- **Study Area**
 - Huntsville, Alabama
 - Population: 200,574
 - Climate: Humid Subtropical
 - Case Study Areas: Downtown, Oak Park, Research Park, Owens Cross Roads, Harvest

- **Study Period**
 - 2010 to 2019
 - Summer Months: June 1st – August 31st
Community Concerns

- 20 million hectares of forest are projected to be lost in the US to population growth and associated urban expansion by 2040.

- Tree canopy loss could result in an enhanced urban heat island (UHI) effect.

- The UHI effect can lead to health issues for those with existing medical conditions such as asthma, diabetes, or COPD.
Partners

- The City of Huntsville
 - Urban and Economic Development
 - The City Council
 - Geographic Information Systems (GIS)
 - Urban and Long-Range Planning
 - City Planning
 - Landscape Management
 - City Engineering

Image Credit: Amanda Tomlinson
Project Objectives

- **Investigate** and **analyze** correlations between tree canopy coverage and land surface temperature (LST)
- **Quantify** the impacts of Huntsville’s urban expansion on **decreasing** tree canopy coverage and **increasing** impervious surface coverage
- **Identify** hot spots within the city that are **experiencing** the UHI Effect and the vulnerable populations within them
- **Communicate** our findings through an ArcGIS Story Map
Satellites & Sensors

Landsat 5
Thematic Mapper (TM)

Terra
Moderate Resolution Imaging Spectroradiometer (MODIS)

International Space Station (ISS)
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Global Ecosystem Dynamics Investigation (GEDI)

Landsat 8
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

Image Credits: NASA
Ancillary Datasets

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Census Bureau Topologically Integrated Geographic Encoding and Referencing</td>
<td>Population Data</td>
</tr>
<tr>
<td>Centers for Disease Control</td>
<td>Health Statistics</td>
</tr>
<tr>
<td>USGS National Land Cover Database</td>
<td>Land Cover Images</td>
</tr>
<tr>
<td>USDA National Agriculture Imagery Program</td>
<td>Digital Ortho-photography</td>
</tr>
</tbody>
</table>
Methodology: Overview

NASA EOs

Google Earth Engine

GEDI Tree Survey

R Studio / ArcPro

Day / Night LST

Land Cover 2010 - 2019

LST 2010 - 2019

Health Data

Principal Component Analysis

End Products

LST/ Land Cover Timeseries

Urban Heat Health Risk

UHI Identification

Tree Canopy Cover Survey

NASA’s Applied Remote Sensing Training Program
Methodology: Land Cover

- Landsat 5
- Landsat 8
- Normalized Difference Built Up Index
- Normalized Difference Vegetation Index
- National Land Cover Database
- Threshold Classification
- Supervised Classification
Results: Land Cover, 2010 to 2019

Land Cover Classes:
- Tree
- Other Pervious
- Impervious
- Water

2010 Supervised Classification
Huntsville, AL: Downtown, Census Tract: 31
Results: Land Cover Validation

- Manually classified 152 random points on 2011 and 2017 NAIP Imagery
- Overall accuracy ranged from 70.0% to 75.0%

<table>
<thead>
<tr>
<th>2017 Reference</th>
<th>Tree</th>
<th>Non-Tree Vegetation</th>
<th>Impervious</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>41</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Non-Tree Vegetation</td>
<td>19</td>
<td>51</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Impervious</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2017 Reference</th>
<th>Tree</th>
<th>Non-Tree Vegetation</th>
<th>Impervious</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>66</td>
<td>16</td>
<td>5</td>
<td>152</td>
</tr>
</tbody>
</table>

Overall accuracy ranged from 70.0% to 75.0%.
Results: Tree Cover, 2010 to 2019

Overall 3% gain in tree cover

Percent Difference in Tree Cover

- ≤ -4%
- ≤ -2%
- ≤ 0%
- ≤ 2%
- ≤ 4%
- ≤ 6%
- ≤ 8%
- ≤ 14%

City of Huntsville
Census Tracts
Methodology: Tree Canopy Survey

Data Acquisition
- Level 2B LiDAR
- Esri World DEM
- 2019 LST Map

Processing
- Tree Cover > 40%
- Pass Quality Inspection
- First and Last Return Subtraction

Histograms of Plant Area Index (PAI) and Height
Results: GEDI Tree Canopy Survey

Distribution of Plant Area Index

- Mean: 3

Distribution of Tree Height (feet)

- Mean: 82

City of Huntsville Trees

GEDI – Global Ecosystem Dynamics Investigation

LST (°F)

- 106
- 70

0 0.2 miles
Methodology: Land Surface Temperature (LST)

- Landsat 5, 8
- MODIS
- ECOSTRESS
- NDVI to Emissivity
- LST (K to °F)
- Day vs Night LST Maps
- LST Calculation (K to °F)
- LST Timeseries

LST Calculation (K to °F): Converts land surface temperature from Kelvin (K) to degrees Fahrenheit (°F).
Results: LST, 2010 to 2019

2010 Land Surface Temperature
Huntsville, AL; Downtown, Census Tract: 31

LST (°F)

- <70
- 70-74
- 74-78
- 78-82
- 82-86
- 86-90
- 90-94
- 94-98
- 98-102
- 102-106

0 2 miles

0 32 miles

NASA’s Applied Remote Sensing Training Program
Results: UHI Identification

Mean LST for Summer 2019 (°F)

LST (°F)
- 63.4 – 74.1
- 74.1 – 78.0
- 78.0 – 82.0
- 82.0 – 86.0
- 86.0 – 90.0
- 90.0 – 94.0
- 94.0 – 98.1
- 98.1 – 102.2
- 102.2 – 106.2
- 106.2 – 139.9

Huntsville City Boundary
Census Tracts
Results: UHI Identification

Daytime and Nighttime LST Comparison for June 12, 2020 (°F)

Daytime vs. Nighttime:
- **Day**: 62.2 – 64.5
- **Night**: 84.3 – 87.7

Temperature Ranges:
- 64.5 – 67.1
- 67.1 – 70.4
- 70.4 – 73.6
- 73.6 – 77.1
- 77.1 – 80.5
- 80.5 – 84.3
- 84.3 – 87.7
- 87.7 – 91.1
- 91.1 – 95.0
- 95.0 – 98.9
- 98.9 – 110.2

Legend:
- Huntsville City Boundary
- Census Tracts
Results: LST Change, 2010 to 2019

Change in LST (°F)

- Yellow: +0 to 2
- Light Orange: +2 to 4
- Orange: +4 to 6
- Dark Orange: +6 to 8
- White: City of Huntsville
- Light Grey: Census Tracts

Map showing the change in LST (°F) for different Census Tracts in the City of Huntsville, with areas shaded according to the change in LST.
Results: Time Series – LST Increase

Tracts with Highest LST Increase

LST Change (2010 – 2019) °F
- + 0 to 2
- +6 to 8
- +2 to 4
- Census Tracts
- +4 to 6

LST Increase

Tree Cover
Impervious Cover
LST
Results: Time Series – Tree Loss

Tree Cover Change (2010 to 2019)

- ≤ -4%
- ≤ -2%
- ≤ 0%
- ≤ 2%
- ≤ 4%

NASA’s Applied Remote Sensing Training Program
Results: Time Series – Case Study Tracts

Case Study Census Tracts

Map of All Census Tracts and Case Study Census Tracts

Tract 9.02: Oak Park

- LST in Fahrenheit
- Percent Tree and Impervious Cover

Tract 113: Owens Cross Roads

- LST in Fahrenheit
- Percent Tree and Impervious Cover

Graphs showing LST and tree cover for both tracts over time (2008-2020).
Results: LST and Land Cover

LST and Tree Cover by Census Tracts

Line of Best Fit:

\[y = -2.636\ln(x) + 89.148 \]

\[R^2: 0.4024 \]
Results: LST and Land Cover

LST and Impervious Surface Cover by Census Tracts

Line of Best Fit:

\[0.1723x + 78.18\]

\[R^2: 0.5982\]
Results: Bivariate Relationships Map

LST decreases drastically with increased tree cover. This relationship holds throughout all areas of Huntsville.
Results: Bivariate Charts

Bivariate Relationships
- Negative Linear
- Negative Convex
- City of Huntsville
- Census Tracts

Oak Park has much lower LST because of its higher tree cover.

Downtown has much higher LST because of its lower tree cover.
Results: Multivariate Clustering

Multivariate Clusters

- Cluster 1
- Cluster 2
- Cluster 3
- Cluster 4
- City of Huntsville
- Census Tracts

City of Huntsville and Census Tracts are marked on the map.
Results: Multivariate Clustering

Multivariate Clustering Box-Plots

Cluster 1
Cluster 2
Cluster 3
Cluster 4
City of Huntsville
Census Tracts

Cluster

Developed Area
LST 2019

Tree Covered Area

Standardized Values
Methodology: Heat Vulnerability

Data Acquisition and Processing:
- CDC Health Data
- Census Age Data
- EO Data over Census Tracts

Statistical Analyses: Principal Component Analysis

End Product: Urban Heat Health Risk Map
Results: Urban Heat Health Risk Map

Overall Heat Vulnerability:
- Huntsville City Limits
- Census Tracts
- Lowest vulnerability
- Moderate vulnerability
- High vulnerability
- Highest vulnerability
- No data

Legend:
- Huntsville City Limits
- Census Tracts
- Lowest vulnerability
- Moderate vulnerability
- High vulnerability
- Highest vulnerability
- No data

Scale:
- 0
- 20 Miles
Conclusions

- LST has increased by approximately 4 °F while tree cover has increased by 3% across the city from 2010-2019.
- Urban expansion in Huntsville has not substantially impacted tree canopy cover from 2010-2019.
- LST has a linear increase in developed areas and decreases logarithmically in relation to tree cover.
- Highly developed areas such as Downtown Huntsville and the Huntsville International Airport exhibited the highest temperatures.
- From our areas of interest, North Downtown Huntsville had one of the highest Heat Vulnerability scores.
Limitations

- Through creating confusion matrices for land cover classification, the overall **accuracies** for the validated years ranged between 70%-75%.

- Cloud cover varied year to year and may have reduced some results.

- GEDI transects were **not available** for the entire study area.
Acknowledgements

 Advisors:
 - Dr. Jeffery Luvall, NASA Marshall Space Flight Center
 - Dr. Robert Griffin, University of Alabama in Huntsville
 - A. R. Williams, NASA DEVELOP

 DEVELOP Mentors:
 - Helen Baldwin, NASA SERVIR
 - Christine Evans, University of Alabama in Huntsville
 - Madison Murphy, Optimal GEO

 Partners:
 - The City of Huntsville
 - Urban and Economic Development: Shane Davis
 - City Council: Francis Akridge
 - City Planning: Lady Kassama
 - GIS: Amy Kenum and Nicholas Haney
 - Urban and Long-Range Planning: Dennis Madsen and Ken Newberry
 - City Engineering: Kathy Martin and Gary Gleason
 - Landscape Management: Marc Byers
Hunting for Heat in Huntsville

Tree Canopy Loss and the Urban Heat Island Effect

Sabine Nix, Greta Paris, Thomas Quintero, and Amanda Tomlinson | July 23, 2020