Urban Heat Islands Observed from a Time-Series of Remote Sensing Data

George Xian & Kevin Gallo
November 24, 2020
Urban Heat Island Indicator Monitoring and Assessment

The Goal:

• This project focuses on using land surface temperature from Landsat Analysis Ready Data (ARD) with land change products to characterize the thermal features of the land’s surface.

• The project develops a framework to assess the urban heat island (UHI) intensity, spatial distribution, and change over time from the 1980s to the present.

• The product provided by this project will be used to monitor UHI change in major cities in the United States.
Urban Heat Island Indicator Monitoring and Assessment

Collaborators:
- USGS National Land Imaging
- US EPA
- USGCRP/NOAA

Point of Contact:
- George Xian (xian@usgs.gov)
Urban Heat Islands (UHI)
Easy to Know, Hard to Know More

• Roads, buildings, and parking lots trap and hold heat, pushing urban temperatures higher than surrounding areas – even at night.

• UHI was identified nearly 200 years ago, but detailed information on hot spots is scarce.
Urban Heat Islands (UHI)
Easy to Know, Hard to Know More

Hurdles to Overcome:

• Temperatures vary from block to block
• Climate stations are limited, at fixed locations, often on the outskirts of town
• Satellite data can track surface temperature with more detail, but observations are limited
• Surface temperatures do not align exactly with air temperature (air temps generally lower)
• The impact of landscape dynamic on UHI is limited
Surface Albedo of Different Land Cover Types

From Trlica et al., 2017, JGR
Future Uses:
• Targeted heat warnings from NWS
• Targeted mitigation efforts by cities
• Health, urban growth, socioeconomic research and analysis
• Refinement of EPA “Heat Waves” Climate Indicator

There is far-reaching value in LST-UHI data.
Landsat Analysis-Ready Data: A New Approach to UHI

- Surface Temperature data from Landsat ARD can be used to generate annual mean temperatures at 30-meter resolution.
- Align, Verify, Automate
- All clear satellite observations used from 1985-present
- Ground stations used to compare surface temperatures with air temperatures
- Algorithm repeatable for any city, year by year
High-Resolution Image and LST in Atlanta (2016): The Airport Has a High LST
Annual Land Cover Change in the Atlanta Area
Land Cover Change in Atlanta: Urban Growth by Consuming Forest Land

![Diagram showing land cover changes in Atlanta from 1985 to 2015. The diagram includes bar charts and line graphs illustrating the percentage of urban, tree, crop, shrub/grass, water, and wetland areas over time.]
The temporal changes of surface temperature in different urban and non-urban lands. T_{mean}_{24} is T-mean of developed, high intensity of urban; T_{mean}_{21} is T-mean of open space development.
UHI Intensity Trends Quantified from T-Mean and T-Max

\[
y = 0.0384x - 69.612 \\
R^2 = 0.2422
\]

\[
y = 0.0183x - 34.164 \\
R^2 = 0.2756
\]

\[
y = 0.0272x - 49.527 \\
R^2 = 0.2526
\]

\[
y = 0.0384x - 69.612 \\
R^2 = 0.2422
\]
High-Resolution Image and LST in Minneapolis (2016): The Airport Has a High LST but Not the Surrounding Neighborhoods
LST Temporal Trends in Atlanta (Left) and Minneapolis (Right) Averaged by US Census Tract
Urban Development and LST in Sioux Falls, SD
High-Resolution Image and LST in Sioux Falls, SD (2016)
Surface Temperature Distribution in Sioux Falls, SD
UHI Intensity in 1986 vs. 2016

1986
High : 10
Low : -5

2 km buffer
5 km buffer
10 km buffer

2016
High : 10
Low : -5

2 km buffer
5 km buffer
10 km buffer

Kilometers
0 1 2 4 6 8

Kilometers
0 1 2 4 6 8

NASA's Applied Remote Sensing Training Program
UHI Intensity and Hotspots in Downtown Sioux Falls
More Thermal Sensors: Mean LST in Different Zip Codes from Ecostress (Left) and Landsat (Right) – July 5, 2020
Minimum Air Temperature and 90th Percentile Hot Days in July and August

Atlanta

\[y = 0.0334x - 13.267 \]
\[R^2 = 0.09 \]

\[y = 0.1342x + 1.4113 \]
\[R^2 = 0.07 \]

Minneapolis

\[y = 0.0729x - 128.57 \]
\[R^2 = 0.0852 \]

\[y = 0.1253x + 2.984 \]
\[R^2 = 0.2665 \]
The Land Surface Temperature product has been produced for targeted cities and is publicly available in the USGS ScienceBase.

Land surface thermal feature (Tmean) change monitoring in urban and urban wild land interface in Minneapolis, MN from 1985-2018 (version 2.0)

Dates

Publication Date: 2019-11-01
Start Date: 1985
End Date: 2018
Revision: 2020-08-20

Citation

Summary

We developed an approach to quantify Urban Heat Island (UHI) extent and intensity in Minneapolis, MN and its surrounding area by using surface temperature from Landsat surface temperature products in a time series manner. Landsat land surface temperature data from Landsat Analysis Ready Data (ARD) were used to quantify surface temperature changes from 1985 to 2018. The current study assessed UHI intensity and its variations associated with urban development on an annual basis. This dataset, over the study period, show that the mean surface temperature in the high intensity urban area significantly increased while no significant trend was found in surrounding non-urban areas. The datasets were annual averages of mean temperature at 30 meter spatial resolution.
Thank You!