

BIENVENIDOS A LA SERIE DE CURSILLOS EN LÍNEA DE LA PERCEPCIÓN REMOTA DE LA NASA (ARSET)

INTRODUCCIÓN A LA PERCEPCIÓN REMOTA PARA APLICACIONES DE INCENDIOS FORESTALES

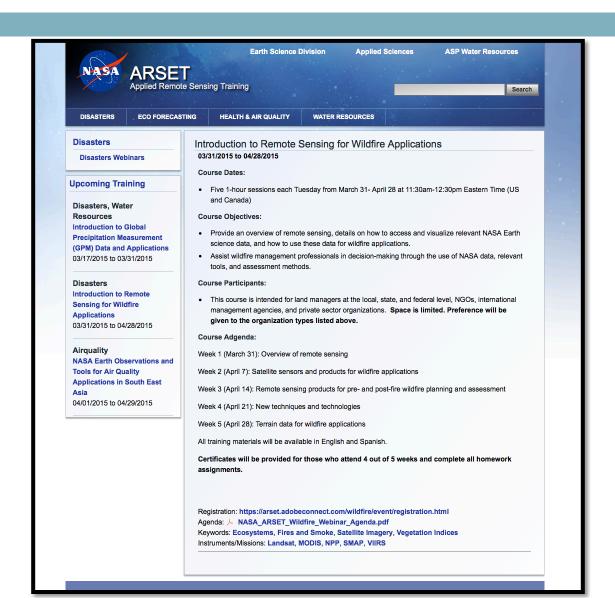
FECHAS DEL CURSILLO: CADA MARTES DEL 31 DE MARZO AL 28 DE

ABRIL

HORA: 11H 30 A 12H 30 HORA ESTE DE EEUU (UTC -5)

Applied Remote Sensing Training

("Capacitación de percepción remota aplicada" en inglés)
Un proyecto de Ciencias Aplicadas de la NASA


Estructura del cursillo en línea

- Una lección por semana cada martes del 31 de marzo al 28 de abril (11h 30 12h 30 hora este de EE UU, UTC -5)
- Las grabaciones de las lecciones semanales, Presentaciones PowerPoint y tareas asignadas pueden encontrarse después de cada sesión en el: http://arset.gsfc.nasa.gov/disasters/webinars/introduction-remote-sensing-wildfire-applications
- Certificado de Terminación del Cursillo
 - Asistir a 4 de las 5 sesiones en línea
 - Entregar las tareas 1 y 2 accesibles desde susodicha página en línea del cursillo sobre incendios forestales
 - Recibirá su certificado aproximadamente 1 mes después de la conclusión del cursillo de: <u>marines.martins@ssaihq.com</u>
- Preguntas: 15 minutos después de cada lección y/o por correo electrónico (cynthia.l.schmidt@nasa.gov)

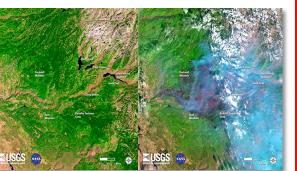
ARSET- Gestión de Incendios Forestales

http://arset.gsfc.nasa.gov/eco/webinars/land-management

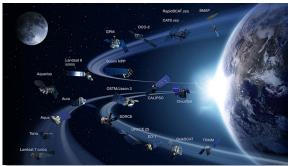
Objetivos del cursillo

- Brindar un panorama de los recursos de observación terrestre de la NASA disponibles para aplicaciones para incendios forestales incluso:
 - Un entendimiento básico de la percepción remota
 - Cómo acceder a y visualizar datos de las ciencias terrestres de la NASA
 - Cómo usar los datos, herramientas y productos de ciencias terrestres de la NASA para aplicaciones pre- y post-quema para incendios forestales
- Este cursillo es un requisito para las capacitaciones del ARSET más avanzadas.

Instructores del cursillo


- Cindy Schmidt (ARSET): cynthia.l.schmidt@nasa.gov
- Amber Kuss (ARSET): amberjean.m.kuss@nasa.gov
- Presentadores Invitados:
 - Keith Weber Universidad Estatal de Idaho (semana 3)
 - Tony Guay Centro de Aplicaciones de la Percepción Remota de la USDA (Dpto. de Agricultura de EEUU) (semana 3)
 - Dale Hamilton Universidad Nazarena del Noroeste (semana 4)
 - Mark Carroll Centro NASA Goddard (semana 4)
 - Lindsey Harriman y Kelly Lemig LP DAAC (semana 5) <u>lharriman@usgs.gov</u>, <u>klemig@usgs.gov</u>

Preguntas generales sobre el ARSET: Ana Prados (ARSET) aprados@umbc.edu


Bosquejo del cursillo

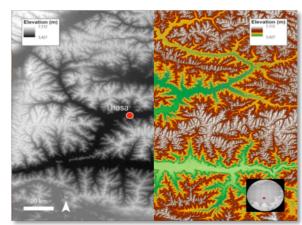
semana 1

Panorama de la percepción remota satelital

semana 2

Plataformas y sensores para aplicaciones de incendios forestales

semana 3


Productos para pre- y postincendio forestal

semana 4

Nuevas técnicas y tecnologías

semana 5

Aplicaciones de datos del terreno

Semana 1- Agenda

- Estructura y objetivos del cursillo
- Panorama del ARSET
- Asuntos de incendios forestales globales
- Cómo puede usarse la percepción remota para aplicaciones de incendios forestales
- Fundamentos de la percepción remota

Applied Remote Sensing Training (ARSET)

("Capacitación de percepción remota aplicada")

NASA Applied Sciences Capacity Building Program

(Programa de fomento de capacitación de ciencias naturales de la NASA)

- META: Incrementar la utilización de datos de observación y de modelos de la NASA para apoyar decisiones a través de actividades de capacitación para profesionales ambientales.
- Capacitaciones en línea: En vivo y grabadas, de 4 a 6 semanas de duración. <u>Incluyen demostraciones de</u> acceso a datos
- Capacitaciones presenciales: En un laboratorio de computación, de 2 a 4 días. Enfoque principal en acceso a datos
- Para los capacitadores: Cursillos y manuales de capacitación para quienes se interesen por dirigir sus propias capacitaciones de percepción remota.
- Áreas de aplicaciones: recursos hídricos, desastres, salud/calidad del aire y gestión de la tierra
- http://arset.gsfc.nasa.gov

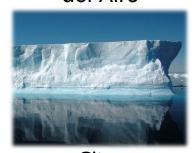
Logros (2008 – 2014)

- 46 capacitaciones completadas
- + de 2300 participantes globalmente
- + de 700+ Organizaciones

Ciencias Terrestres de la NASA Áreas de Aplicaciones del Programa de Ciencias Aplicadas

Desastres

Pronósticos Ecológicos


Salud y Calidad del Aire

Recursos Hídricos

Agricultura

Clima

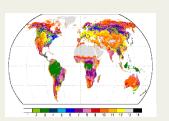
Energía

Océanos

Meteorología

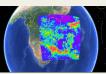
ARSET: Áreas de enfoque de las capacitaciones

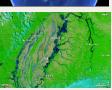
Salud(Calidad del Aire)


- · 2008 presente
- 33 capacitaciones
- + de 1000 usuarios
- Análisis del polvo, incendios y contaminación aérea urbana.
- Transporte de contaminantes sobre largas distancias
- Inter-comparaciones de modelos satelitales y regionales de la calidad del aire.
- Apoyo para el pronóstico de la calidad del aire y el análisis de eventos excepcionales

Recursos Hídricos y Monitoreo de Inundaciones

- abril 2011 presente
- 11 capacitaciones
- + de 1000 usuarios
- Monitoreo de Inundaciones/ Sequías
- Tiempo y precipitación severos
- Gestión de cuencas hídricas
- Impacto del clima sobre recursos
- Monitoreo de nieve/hielo
- Evapotranspiración (ET), agua subterránea, humedad del suelo y escorrentía.


Gestión de la Tierra


- Lanzado en 2014
- 2 capacitaciones
- + de 300 usuarios
- Aplicaciones del GIS
- Índices de vegetación
- Productos de fuego (comenzando en 2015)

Capacitación para capacitadores (Comenzando en 2015)

- Cursillos y consejos sobre cómo diseñar y desarrollar SU PROPIA capacitación de percepción remota en línea o a base de computadora
- Cómo desarrollar presentaciones y ejercicios efectivos.

ARSET: Método de Aprendizaje Gradual

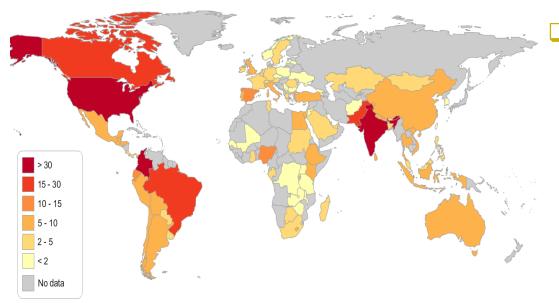
Capacitación Básica Cursillos en línea Presenciales No supone ningún conocimiento previo de la PR

Capacitación Avanzada Presencial

En general se requiere haber pasado un cursillo en línea Enfocado en aplicaciones/problemas/

datos específicos: por ejemplo el monitoreo del polvo o del humo en un país o región en particular

Capacitación en línea



Capacitación presencial

ARSET: Capacitación

2008 – 2014

- 46 capacitaciones
- □ + de 2300 usuarios
- □ +de 700 Organizaciones

Número de organizaciones participantes por país (arriba) y por estado de EE UU (derecha): Calidad del Aire, Agua, Inundaciones y Gestion de la Tierra

Temas Globales de Incendios Forestales y Aplicaciones de la Percepción Remota

Incendios Forestales: Temas Globales Críticos

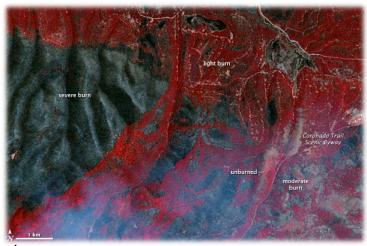
- Pérdida de vidas humanas y propiedad
- Contaminación aérea
- Pérdida de hábitat
- Cambios de régimen hidrológico y mayor riesgo de deslizamientos de tierra
- Mayor frecuencia, duración y severidad debido a los métodos de supresión de incendios y al cambio climático

Preguntas de las Investigaciones de las Ciencias Terrestres de la NASA

- ¿Cómo está cambiando el sistema global terrestre?
- ¿Cuáles son las <u>principales causas de los cambios</u> en el sistema terrestre?
- ¿Cómo <u>responde</u> el sistema terrestre a los cambios naturales y aquellos de origen humano?
- ¿Cuáles son las consecuencias de los cambios en el sistema terrestre para la civilización humana?
- ¿Cuán bien podemos <u>predecir futuros cambios</u> al sistema terrestre?

Preguntas Globales sobre la Gestión de Incendios Forestales

- ¿Cuáles son las condiciones forestales pre- y post-quema?
- ¿Cuáles son los aspectos sociales y económicos de los incendios forestales?
- ¿Cómo afectan los cambios de uso de la tierra a los incendios forestales?
- ¿Cómo puede usarse la percepción remota para mejorar las medidas de respuesta a los incendios y los esfuerzos de mitigación pre- y post-quema?
 - ¿Cuáles son las herramientas que los administradores pueden usar para hacer estas evaluaciones?


El Monitoreo de Incendios Forestales con la Percepción Remota

- Mapeo de condiciones pre-fuego
 - Humedad de combustible
 - Tipos de combustible
 - Topografía
- Rastreo active de incendios
 - Temperatura superficial (tecnología termal)
 - Columnas de humo
- Mapeo de severidad postquema
 - Área quemada

Mapeo Activo de Incendios: https://www.servirglobal.net

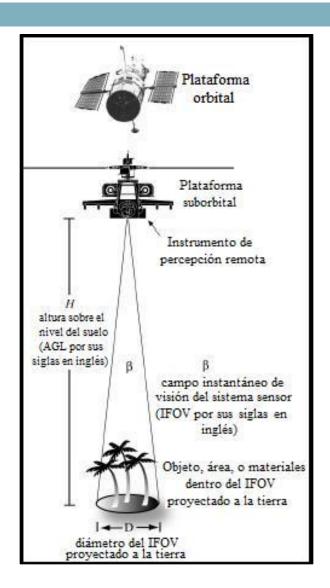
Área Quemada del Incendio Wallow, 2011, http://earthobservatory.nasa.gov/IOTD/view.php?id=51204

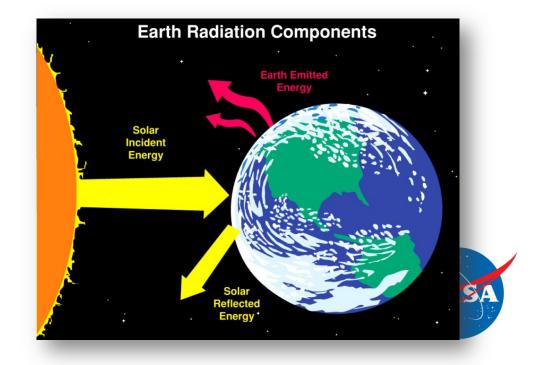
Fundamentos de la Percepción Remota

¿Qué es la Percepción Remota?

NASA

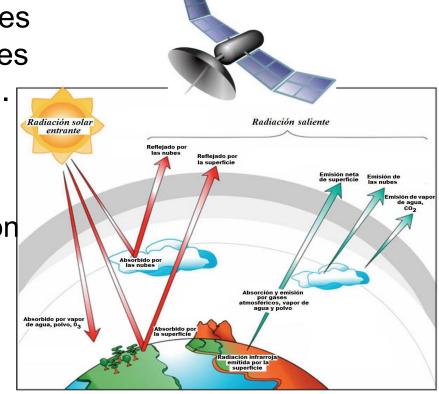
La medición de una cantidad asociada con un objeto por un aparato no en contacto directo con el objeto



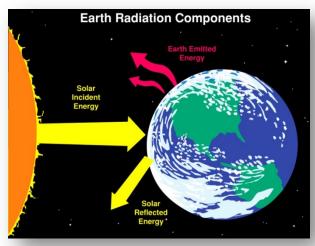

- La plataforma más útil depende de la aplicación
- ¿Qué información? ¿Cuánto detalle?
- ¿Cuán frecuente?

Percepción Remota Satelital

Los satélites llevan instrumentos o sensores que miden la radiación electromagnética procediendo del sistema tierra-atmósfera

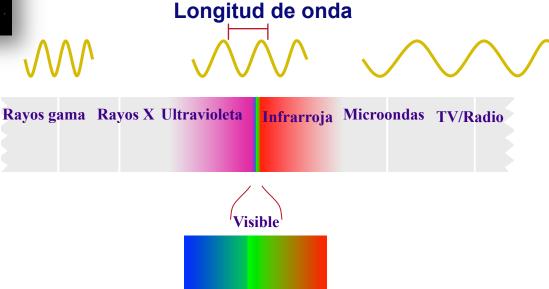


Percepción Remota Satelital


 La intensidad de la radiación reflejada y emitida al espacio es influenciada por las condiciones en la superficie y la atmósfera.

 Por lo tanto, las mediciones satelitales contienen información sobre las condiciones de la superficie y la atmósfera

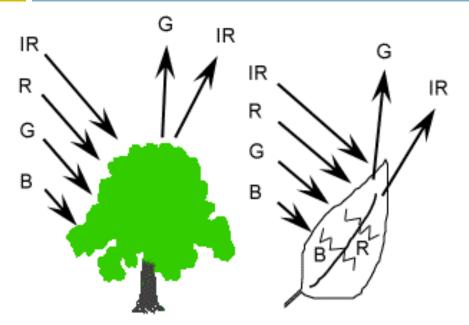
La Radiación Electromagnética



El sistema Tierra-Océano-Terreno-Atmósfera:

- refleja radiación solar de vuelta al espacio
- emite radiación infrarroja y microonda al espacio

El Espectro Electromagnético

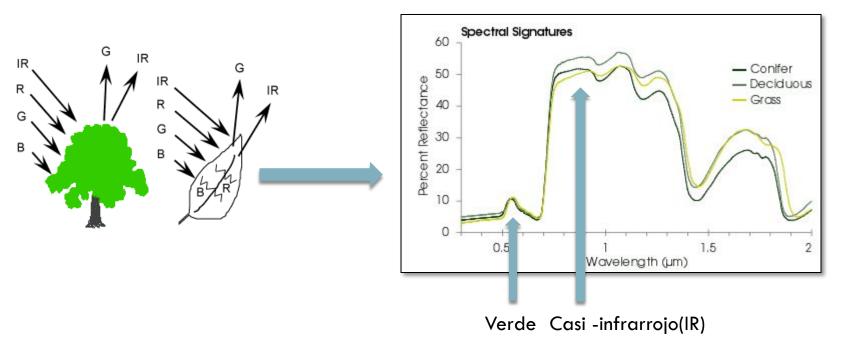


micrómetros

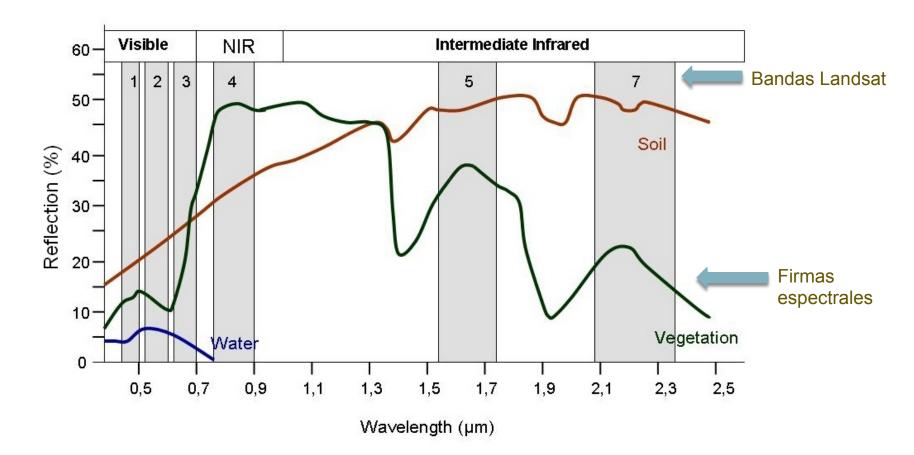
~ 0.4

Energía Electromagnetica

Ejemplo: La vegetación verde, <u>absorbe</u> las ondas azules (B) y rojas (R) y refleja las verdes (G) e infrarrojas (IR)


Por eso la vegetación sana se ve verde

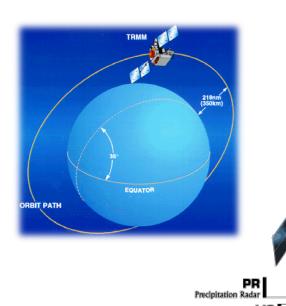
- Cada tipo de superficie tiene su propia firma espectral
- Volviendo al ejemplo de la vegetación sana....


Firma Espectral

Firmas Espectrales en las Imágenes

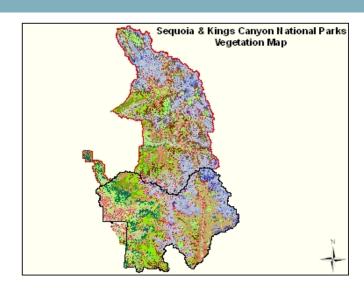
Las imágenes percibidas remotamente adquieren información en diferentes longitudes de onda, representando diferentes partes del Espectro Electromagnético

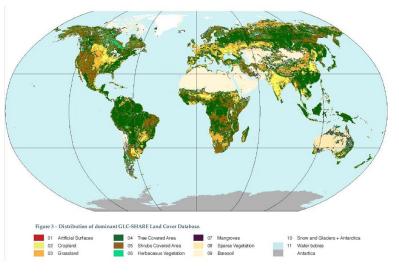
Lo que debemos saber sobre las observaciones de la percepción remota satelital



- Tipos de Instrumentos/sensores
- Tipos de órbita satelital al rededor de la Tierra
- Cobertura especial y temporal
- Cantidades geofísicas derivadas de las mediciones
- Calidad y exactitud de la cantidad recuperada
 - Disponibilidad, acceso, formato
 - Aplicaciones y usos

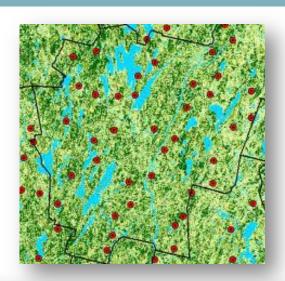
Éstos afectan la resolución espacial, la resolución temporal y la cobertura espacial


ighting Imaging Senso


Clouds and Earth's Radiant Energy Syste

Observaciones de la Percepción Remota: Ventajas

- Proporcionan información donde no hay mediciones a nivel del suelo
- Proporcionan observaciones globalmente consistentes
- Proporcionan datos a fechas/horas específicas
- Económicas en cuanto al costo comparado con campañas realizadas sobre el terreno



Observaciones de la Percepción Remota: Desventajas

NASA

- Limitaciones de Resolución Espacial
 - No proporcionan un alto nivel de detalle a nivel del suelo
 - No pueden detectar el tipo de cubierta terrestre bajo la cubierta forestal
- Las mediciones a nivel del suelo tales como el Análisis de Inventario Forestal de (Forest Inventory Analysis o FIA) pueden proporcionar información más detallada en una escala más fina

Sensores Satelitales

Sensores Satelitales

Tipos de sensores

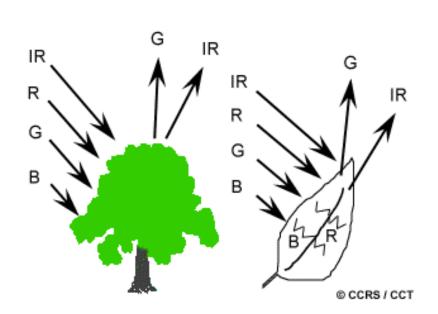
Resolución espectral

Resolución radiométrica

Resolución espacial

Sensores Satelitales

- Pasivos- estos sensors miden energía radiante reflejada o emitida por el sistema tierra-atmósfera
 - □ Ejemplos: Landsat, MODIS



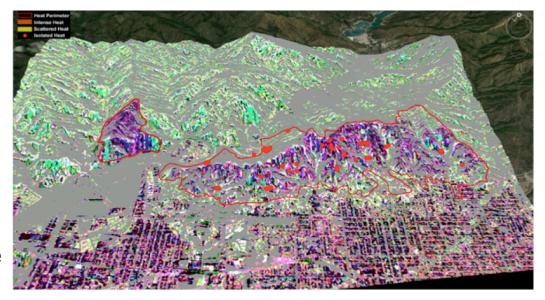


Imagen del Landsat del área de la bahía de San Francisco, California

Satellite Sensors

- Activos: estos sensores 'lanzan' rayos de radiación sobre el Sistema tierraatmósfera y miden la radiación retrodifundida
 - La radiación retrodifundida se convierte en parámetros geofísicos
- Ventajas:
 - Pueden usarse de día o de noche
 - Pueden penetrar las nubes
- Desventajas:
 - Difíciles de procesar
 - Algunos disponibles solo de las aeronaves
- Ejemplos: Radar, LIDAR

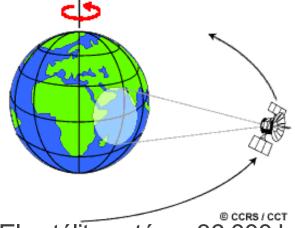
Mapa de daños causados por incendios (área morada delineada en rojo) producido al adaptar una técnica de detección de cambios a los datos polimétricos de la banda L del UAVSAR. Las áreas delineadas son el incendio Madre de 2013 (izquierda) y el incendio Colby de 2014 (derecha); los puntos rojos indican los puntos calientes de los incendios forestales (Servicio Forestal de EE UU, National Infrared Operations).

Resolución espacial y temporal de las mediciones satelitales

 Dependen de la configuración de la órbita satelital y los diseños del sensor.

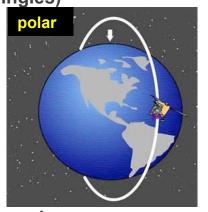
Resolución temporal:

Cuán frecuentemente un satélite observa la misma área de la tierra


Resolución espacial:

■ Determinada por el tamaño de pixel – un pixel es la unidad más pequeña que un sensor mide

Tipos de órbita satelital

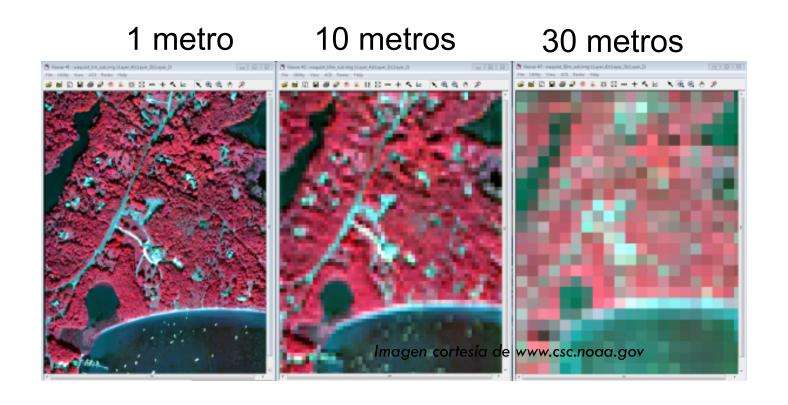


Órbita geoestacionaria

- □ El satélite está a ~36,000 km sobre la tierra en la línea ecuatorial. Tiene el mismo período de rotación que la Tierra. Parece estar "fijo" en el espacio.
 - Mediciones frecuentes
 - Cobertura espacial limitada
- Ejemplos
 - satélites del tiempo o de comunicaciones

Órbita terrestre baja (LEO por sus siglas en inglés)

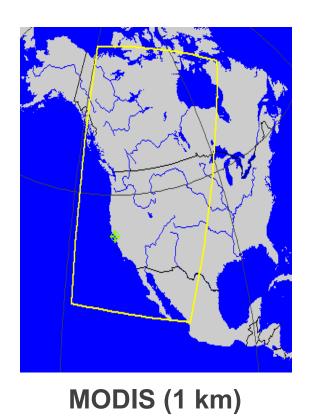
- Órbita circular en movimiento constante relativo a la tierra a 160-2000 km. Puede ser polar o no polar.
 - Mediciones menos frecuentes
 - Cobertura espacial amplia (global)
- Ejemplos de satélites de órbita polar: Landsat o satélites de Terra



 La resolución espacial se refiere al detalle discernible en una imagen por pixel

Sensor	Resolución espacial
Digital Globe (y otros)	1-4 m
Landsat	30 m
MODIS	250m-1km

Resolución espacial



PERO....¡hay un compromiso entre resolución espacial y extensión espacial!

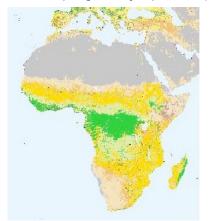
Extensión Espacial

 Generalmente, mientras más alta la resolución espacial, menos área es cubierta por una sola imagen

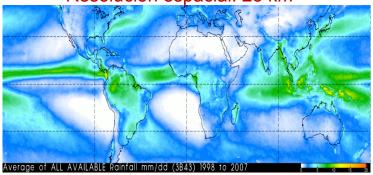
Landsat (30 m)

Mediciones satelitales de la NASA con diferentes resoluciones espaciales

Imagen de Landsat de Filadelfia

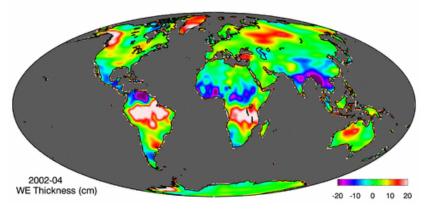

Resolución espacial: 30 m

Cubierta terrestre de Terra/MODIS:


Resolución espacial: 1 km²

(From: http://gislab.jhsph.edu/)

Tasa pluvial del TRMM


Resolución espacial: 25 km²

Variaciones del almacenaje de agua terrestre de

GRACE: Resolución espacial: 150,000 km² o más bruta

(Cortesía: Matt Rodell, NASA-GSFC)

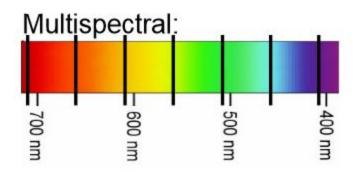
Cobertura espacial y resolución temporal

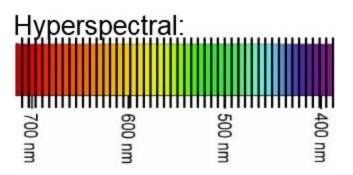
- Satélites de órbita polar: cobertura global pero sólo una o dos o menos mediciones al día por sensor. Existen lagunas orbitales. Mientras más grande el tamaño del barrido, más alta la resolución temporal.

Aqua (órbita "ascendiente") de día

■ Satélites de órbita no polar: Menos de una al día. Cobertura no global. Existen lagunas orbitales. Mientras más grande el tamaño del barrido, más alta la resolución temporal.

Satélites geoestacionarios: múltiples observaciones al día, pero con cobertura espacial limitada, se necesita más de un satélite para una cobertura global.



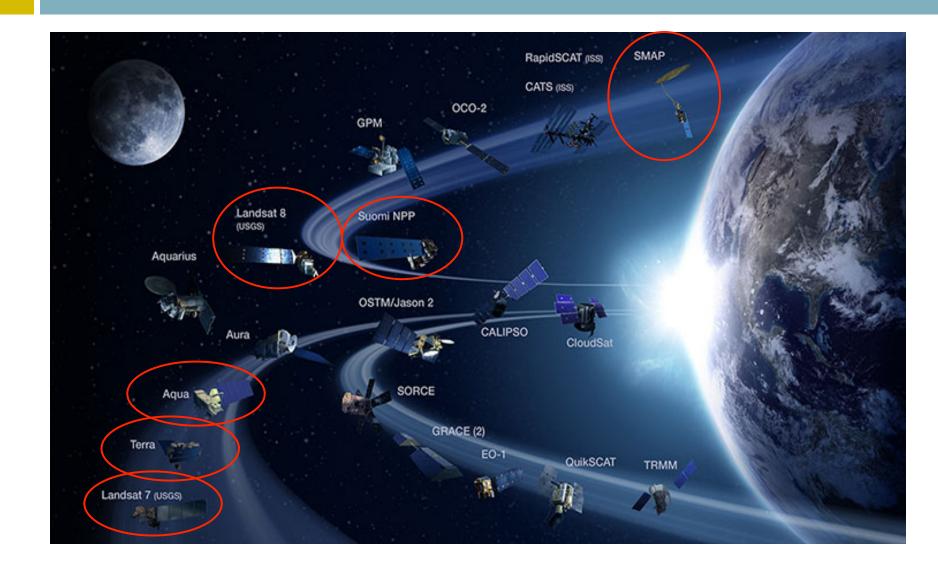

Imagen del GOES

Resolución Espectral y Radiométrica

Resolución espectral: El número de canales espectrales y su ancho. Canales más numerosos y más finos permiten la percepción remota de diferentes partes de la atmósfera.

Resolución radiométrica: Mediciones de la percepción remota representadas como una serie de números digitales – cuanto más grande este número, más alta la resolución radiométrica y más nítidas las imágenes.

Observaciones de la percepción remota: Compromisos



- Es muy difícil obtener altas resoluciones espectral, espacial, temporal y radiométrica al mismo tiempo.
- Varios sensores pueden obtener una cobertura global entre cada día y cada dos días debido a la gran anchura del barrido que trazan.
- Los satélites en órbita polar o no polar de mayor resolución espacial pueden tardar entre 8 y 16 días para realizar una cobertura global.
- Los satélites geoestacionarios obtienen observaciones mucho más frecuentes pero a menor resolución debido a que la distancia orbital es mucho mayor.
- Gran cantidad de datos en formatos variados
- Las aplicaciones de datos pueden requerir procesamiento, visualización, o herramientas adicionales

Satélites y Sensores de la NASA para la Gestión de Incendios Forestales

Satélites de la NASA para la gestión de Incendios Forestales

Satélites de la NASA para la gestión de Incendios Forestales

Satélite	Sensor(es)	Fechas	Resolución espacial
Landsat 1-3	MSS	1972 - 1983	80 metros
Landsat 4 y 5	Landsat TM	1982 - 2013	30m (120 m banda termal)
Landsat 7	Landsat ETM+	1999 - presente	15m pancromática, 30m multiespectral, 60m termal
Landsat 8 (LDCM)	Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS)	2013 - presente	15m pancromática; 30m multiespectral; 100m termal
Terra, Aqua	MODerate Resolution Imaging Spectroradiometer (MODIS)	2000 - presente	250m - 5600m
Terra	ASTER	2000 - presente	15-90m
22	Hyperion, Advanced Land Imager (ALI)	2000 - presente	10-30m
Suomi NPP	Visible Infrared Imager Radiometer Suite (VIIRS)	2013 - presente	375-750m
SMAP	Soil Moisture Active Passive	2015 - presente	3 km

Productos Derivados de Satélites de la NASA para la Gestión de Incendios Forestales

Mapeo Pre-Incendio

- □ Índice y extension de vegetación
- Humedad del suelo/Severidad de sequía
- □ Topografía

Mapeo Activo de Incendios

- Área total actualmente quemándose
- Potencia Radiativa de Incendio (Fire Radiative Power o FRP) usando bandas termales

Mapeo Post-Incendio

- ☐ Área total quemada
- Severidad de quema
- □ Re-crecimiento de vegetación post-incendio (NDVI)

¡La próxima semana!

Semana 2: Plataformas satelitales y aeronáuticas para aplicaciones para incendios forestales


Información Importante

- Una lección por semana cada martes del 31 de marzo al 28 de abril (11h 30 12h 30 hora este de EE UU, UTC -5)
- Las grabaciones de los lecciones semanales, Presentaciones PowerPoint y tareas asignadas pueden encontrarse después de cada session en el: http://arset.gsfc.nasa.gov/disasters/webinars/introduction-remote-sensing-wildfire-applications
- Certificado de Terminación del Cursillo
 - Asistir a 4 de las 5 sesiones en línea
 - Entregar las tareas 1 y 2 accesibles desde susodicha página en línea del cursillo sobre incendios forestales
 - Recibirá su certificado aproximadamente 1 mes después de la conclusión del cursillo de: <u>marines.martins@ssaihq.com</u>
- Preguntas: 15 minutos después de cada lección y/o por correo electrónico (cynthia.l.schmidt@nasa.gov)

Incendio Estación 2009.

El Sensor
Modular
Autónomo de la
NASA recopiló
esta imagen de
rehabilitación de
emergencia de
área quemada
(Burned Area
Emergency
Rehabilitation, o
BAER) el 19 de
nov. 2009.
(Imagen de la
NASA)

iiGracias!!

Cindy Schmidt

Cynthia.L.Schmidt@nasa.gov