

National Aeronautics and Space Administration

ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov

Introduction to Remote Sensing for Disaster Management

Week 4 Monitoring Landslides, Storms, and Floods Using Remote Sensing Observations

www.nasa.gov

Course Outline

Week 1: Monitoring Earthquakes, and Tsunamis Using NASA Remote Sensing and Models

Week 2: Overview of Remote Sensing for Wildfire Applications

Week 3: Observation of Oil Spills Using Remote Sensing Measurements

Week 4: Monitoring Landslides, Storms, & Flooding Using Remote Sensing Observations

Course Structure

- One session per week on June 9, 16, 23, and 30, 2016
 - 11 a.m. 12 p.m. EDT (UTC-4)
 - 6 p.m. 7 p.m. EDT (UTC-4)
- Each session may include
 - Presentation
 - A homework assignment
- Q&A following each session or by email to Tim Stough (<u>stough@jpl.nasa.gov</u>) or Amita Mehta (<u>amita.v.mehta@nasa.gov</u>)

Course Material

http://arset.gsfc.nasa.gov/disasters/webinars/disaster-overview-2016

Webinar presentations, exercises, homework assignments, and recordings

Links will be available on the ARSET course page

Using NASA Remote Sensing for Disaster Management

 Dates:
 Thursday, June 9, 2016 to Thursday, June 30, 2016

 Times:
 11:00 a.m.-12:00 p.m. and 6:00-7:00 p.m. EDT (UTC-4)

 Registration Closes:
 Monday, June 6, 2016

Disasters Disasters Webinars -Disasters Workshops -Upcoming Training Disasters Using NASA Remote Sensing for Disaster Management 06/09/2016 to 06/30/2016 Airquality **Fundamentals of Satellite Remote Sensing for Health**

• Finding the Slippery Slope: Detecting Landslide from Space

Guest Speaker: Dalia Kirschbaum NASA-GSFC

 Monitoring Storms and Floods Using Remote Sensing Observations

Speaker: Amita Mehta (ARSET) NASA-GSFC Finding the Slippery Slope: Detecting Landslides from Space

Dr. Dalia Kirschbaum Research Scientist NASA Goddard Space Flight Center

National Aeronautics and Space Administration

ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov

🔰 @NASAARSET

Monitoring Storms and Floods Using Remote Sensing Observations

www.nasa.gov

- Remote Sensing Measurements Used for Storm and Flood Monitoring
- Overview of NASA Hurricane and Tropical Storm Portal
- Overview of Flood Monitoring Tools Based on Remote Sensing Observations

Remote Sensing Measurements Used for Storm and Flood Monitoring

NASA Satellites and Sensors Used For Storm and Flood Monitoring

- Tropical Rainfall Measuring Mission (TRMM): 11/1997-15/2015
- Global Precipitation Measurements (GPM): 2/2014-present
- Terra: 12/1999-present
- Aqua: 5/2002-present

TRMM and GPM

http://pmm.nasa.gov/

- Both in non-polar, low-inclination orbits
- TRMM Precipitation Sensors:
 - TMI (TRMM Microwave Imager)
 - PR (Precipitation Radar)
 - VIRS (Visible and Infrared Scanner)
- GPM Precipitation Sensors:
 - GMI (GPM Microwave Imager)
 - DPR (Dual-frequency Precipitation Radar)

- TRMM measurements are limited to the tropics
- GPM measurements span middle & high latitudes

Multi-Satellite Precipitation From TRMM and GPM

http://pmm.nasa.gov/science/precipitation-algorithms

- TRMM & GPM Core satellites are used to calibrate microwave observations from a constellation of national and international satellites
- Allow improved spatial and temporal coverage of precipitation data
- TRMM Multi-satellite Precipitation Analysis (TMPA)
 - Widely used for applications
- TMPA will be extended to match Integrated Multi-satellitE Retrievals for GPM (IMERG)

TMPA and IMERG

Used for Storms and Flood Monitoring

	ТМРА	IMERG	
Spatial Resolution	0.25° x 0.25°	0.1°x0.1°	
Spatial Coverage	Global, 50°S-50°N	Global, 60°S-60°N (will be extended from pole-pole)	
Temporal Resolution	3 hours	30 minutes	
Temporal Coverage	12/1997 – Present*	2/27/2014-Present+	

⁺ TMPA and IMERG combined data will be available in late 2017 at IMERG data resolution * After 15 April 2015 TRMM climatological calibration is being used to generate TMPA

Terra and Aqua

Terra

- Polar orbit, 10:30 a.m. equator crossing time
- Global coverage
- Dec 18, 1999 present
- 1-2 observations per day
- Sensors:
 - ASTER, CERES, MISR, MODIS, MOPITT

Aqua

- Polar orbit, 1:30 p.m. equator crossing time
- Global coverage
- May 4, 2002 present
- 1-2 observations per day
- Sensors:
 - AIRS, AMSU, CERES, MODIS, AMSR-E

MODerate Resolution Imaging Spectroradiometer (MODIS)

http://modis.gsfc.nasa.gov

- On-board Terra and Aqua
- Designed for land, atmosphere, ocean, and cryosphere observations
- Spatial Coverage and Resolution:
 - Global, Swath: 2,330km
 - Spatial Resolution Varies: 250m, 500m, 1km
- Temporal Coverage and Resolution:
 - 2000-present, 2 times per day

Spectral Bands

- 36 bands (red, blue, IR, NIR, MIR)
 - Bands 1-2: 250m
 - Bands 3-7: 500m
 - Bands 8-16: 1000m

Hurricane Katrina (8/29/2005) Observed by Aqua/MODIS

http://phys.org/news/2015-08-nasa-hurricanes.html

Overview of NASA Hurricane and Tropical Storm Portal

Monitoring Hurricanes and Storms

- Satellite Images and Precipitation Products are used to monitor storms
- Web-tools are available for past and near real-time storm information:

Hurricanes and Tropical Storms http://www.nasa.gov/mission_pages/hurricanes/main/index.html

Precipitation Measurement Mission (PMM) Tropical Cyclones https://pmm.nasa.gov/applications/tropical-cyclones

Hurricanes and Tropical Storms

http://www.nasa.gov/mission_pages/hurricanes/main/index.html

Hurricanes and Tropical Storms

http://www.nasa.gov/mission_pages/hurricanes/main/index.html

19

PMM Tropical Cyclones

http://pmm.nasa.gov/applications/tropical-cyclones

- Near Real-time Monitoring
 using GPM
- Archives from TRMM & GPM

GPM sees Tropical Storm Danielle Forming : June 20, 2016

Overview of Flood Monitoring Tools Based on Remote Sensing Observations

NASA Remote Sensing Observations for Flood Monitoring

https://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar

There are primarily **3 types** of flood monitoring tools that use remote sensing observations:

- 1. Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
- 2. Infer flooding conditions by using satellite-derived precipitation
- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations

Flood Monitoring Using NASA Rainfall Observations

- 1. Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
 - Global Flood Monitoring System (GFMS): <u>http://flood.umd.edu</u>
- 2. Infer flooding conditions by using satellite-derived precipitation
 - Extreme Rainfall Detection System (ERDS): <u>http://erds.ithacaweb.org</u>
- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations

NASA Rainfall Observations Used in GFMS & ERDS2

TRMM Multi-satellite Precipitation Analysis (TMPA)

- Combines precipitation from TRMM and several national/international satellites to obtain 3-hourly, 0.25°x0.25° resolution data with global coverage between 50°S to 50°N
- TMPA will be replaced with Integrated Multi-SatellitE Retrievals (IMERG) for Global Precipitation Measurement (GPM) data with half-hourly, 0.1°x0.1° resolution and global coverage between 65°S to 65°N

Note: TRMM is no longer flying, but TRMM-based calibration is used to provide near real-time rainfall from a constellation of national & international satellites for flooding applications. Near real-time IMERG data is also available from: <u>ftp://jsimpson.pps.eosdis.nasa.gov</u>

 30

 22

 23

 24

 25

 26

 27

 28

 29

 21

 22

 23

 24

 25

 26

 27

 28

 29

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 20

 20

 21

 22

 23

 24

 25

Daily TMPA/3B42RT for 15 February 2016

Global Flood Monitoring System (GFMS)

GFMS

http://flood.umd.edu

Provides global maps, time series, and animations (50°S-50°N) of:

- Instantaneous Rain
- Accumulated rain over 24, 72, and 168 hours
- Streamflow rates and flood detection at 1/8th degree (~12 km) and also at 1 km

GFMS Features

http://flood.umd.edu

- Map navigation
- Zoom in/out
- Select individual grid point for data for time sequence
- Plot different variables
- 3-hourly output

Flooding in Niger River Basin – June 29, 2016

[mm]

200

http://flood.umd.edu

0.01

10

20

50

100

Extreme Rainfall Detection System (ERDS)

ERDS

http://erds.ithacaweb.org/

- Near real-time TRMM and NOAA-Global Forecasting System (GFS) data for monitoring & forecasting accumulated rainfall
- TRMM historical archive is used for calculation of extreme rainfall thresholds
- TRMM near real-time rainfall amount, GFS forecasted rainfall information, & reference data combine to generate flooding eventspecific information

ERDS

http://erds.ithacaweb.org/

- Global maps and time series of near realtime (50°S-50°N) and forecasted accumulated rainfall over 24, 48, 72, 96, 120 & 144 hours
- Extreme rainfall alerts at 0.25°x0.25° level and at administrative districts level
- Event-specific information, including:
 - the list of the affected countries
 - an estimation of the affected population
- Currently the ERDS system is one of the tools used by OMEP, UN World Food Programme (WFP) Emergency Preparedness Unit

ERDS Alerts

Applied Remote Sensing Training Program

NASA Remote Sensing Observations for Flood Monitoring

http://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar

There are primarily **3 types** of flood monitoring tools that use remote sensing observations:

- 1. Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
- 2. Infer flooding conditions by using satellite-derived precipitation
- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations

Inundation Mapping

Using Satellite-Derived Land-Cover Observations

- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations
 - MODIS NRT Global Flood Mapping: <u>http://oas.gsfc.nasa.gov/floodmap</u>
 - Dartmouth Flood Observatory: <u>http://floodobservatory.colorado.edu</u>

Inundation Mapping

Using Terra/Aqua MODerate Resolution Imaging Spectroradiometer (MODIS)

- MODIS provides observations of land surface
- Reflectance from bands indicate
 presence of water on previously dry land
 - 1 (620-670nm)
 - 2 (841-876 nm)
 - 7 (2105-2155nm)
- Global reference database of water bodies formed at 250m resolution
- MODIS cannot see the surface through clouds

Flooding along the White Nile, Sudan earthobservatory.nasa.gov

MODIS-Aqua 6/19/2003 MODIS- Terra 8/11/2003

MODIS Near Real-Time Global Flood Mapping

MODIS NRT Global Flood Mapping

- Flood mapping based on MODIS reflectance at 250m resolution
- Composited on 2, 3, and 14 days
- Flood maps available in 10°x10° tile
- Permanent water and surface flood water data available
- Cloud shadows or terrain shadows can be misinterpreted as surface water

Provides near real-time and past flood mapping from April 2011. http://oas.gsfc.nasa.gov/floodmap

MODIS NRT Global Flood Mapping: Available Quantities

http://oas.gsfc.nasa.gov/floodmap

Products	Available Downloads					
MODIS Flood Map	MFM	png				
MODIS Flood Water	MFW	shapefile ((.zip)	KMZ		
MODIS Surface Water	MSW	shapefile ((.zip)	KMZ		
MODIS Water Product	MWP	geotiff				
README		pdf		txt		
		_				
Check slide show for t	10-da	y Slides				

MODIS Flood Mapping: Flooding in Southern Brazil June 12-14, 2016

3 Day Composite	2 Day Composite	1 Day Composite	14 Day Composite				
« June 2016) »	Pr	oducts		Available Down	loads	N
ѕ м т w т	FS	MC	DIS Flood Map	MFM	png		Û
12	3 4	MC	DIS Flood Water	MFW	shapefile (.zip)	KMZ	$W \ \Box \not E$
56789	10 11	M	DIS Surface Water	MSW	shapefile (.zip)	KMZ	П
12 13 14 15 16	17 18	M	DIS Water Product	MWP	geotiff		Š
19 20 21 22 23	24 25	RE	ADME		pdf	txt	Ŭ
26 27 28 29 30						1	
		Ch	eck slide show for t	he las	t 10 days.		

Filename Convention:

MODIS Flood Mapping: Flooding in Southern Brazil 12-14, 2016

3 Day Composite	2 Day Composite 1 Day 0	Composite 14 Day Composite)				
« June 2016 »		Products	Products		ownloads	N		
S M T W T	FS	MODIS Flood Map	MFM	png				Û
1 2 5 6 7 8 9	3 4 10 11	MODIS Flood Water	MFW	percent (.tif)	any (.tif)	any (.shp)	any (.kmz)	$\mathcal{W} \subset \supset \mathcal{E}$
12 13 14 15 16 19 20 21 22 23	5 17 18 8 24 25	MODIS Surface Water	мsw	percent (.tif)	any (.tif)	any (.shp)	any (.kmz)	S
26 27 28 29 30)	README		pdf	txt			

Composites of the previous 14 days' 3-day product

Similar filename convention with additional processing for composite field:

N: No shadow masking

- T: Terrain shadow masking
- C: Cloud shadow masking
- S: Both terrain & shadow masking

e.g. 2D2OT:

2 days imagery, 2 observations required, terrain shadow masking applied

- Provides occurrence of water as % clear observations over the last 14 days' products
 - GeoTIFF are 0-1 images (1 if % water is >0)

The Dartmouth Flood Observatory (DFO)

DFO

http://floodobservatory.colorado.edu

- Uses flood mapping based on MODIS reflectance
- Also uses Landsat-8 and EO-1 images and COSMO-SkyMed and Sentinel-1 synthetic aperture radar (SAR) images when available
- Experimental river discharge obtained by using Microwave data (AMSR, AMSR-2, TMI, GMI0 and a run-off model

Provides near-real time flood mapping and current/past flood event mapping

DFO Flood Event Mapping

Red: Flooding within past 14 days (MODIS animated product)

Light Red: Flooding during this event (earlier MODIS coverage of non-automated MODIS mapping)

Dark Blue: Permanent water, Feb 2000 (Shuttle Water Boundary Data)

Darker Red: Flooded areas (High resolution SAR or Landsat 8 data)

Bright Green: Past Floods

Colored dots show access River Watch Site

DFO Experimental River Watch

http://floodobservatory.colorado.edu

- Sensitive to portions of water and dry land:
 - Advanced Microwave Scanning Radiometer-2 from GCOM-W (Japanese Space Agency Mission)
 - TRMM Microwave Imager (ended 8 April 2015)
 - GPM Microwave Imager
- These microwave observations are converted to actual river discharge by combining them with surface discharge measurements and then to runoff by using a Water Balance Model (WBM)
- Runoff calculations are available starting in 2003, seven-day runoff deviation started in 2003-2007
- Mean runoff is mapped to indicate low, normal, moderate, and major flooding

DFO River Watch Locations

http://floodobservatory.colorado.edu

DFO River Watch Paraguay

http://floodobservatory.colorado.edu

DFO River Watch Paraguay

http://floodobservatory.colorado.edu

River Watch Version 2

Experimental Satellite-Based River Discharge Measurements using passive microwave radiometry DFO Site Number Site 854 (Paraguay) Tebicuary Center: -57.194 Long. River **GFDS Site Number** 845 Center: -26.505 Lat. DRAFT Paraguay 67905 sq km WBM contributing area Last measured: 19-Jun-16 Obtain Data (1, low flow; 2, normal flow; 3, moderate flood; 4, major flood, r >5 yr) Average Discharge: 562 m3/sec Status: 2 7-day Runoff #N/A (7-day runoff compared to 10 yr average for this date, 2003-2012) #N/A mm Recent Record Technical Summary

Summary of Storm and Flood Web-Tools

Storms:

- <u>http://www.nasa.gov/mission_pages/hurricanes/main/index.html</u>
- <u>http://pmm.nasa.gov/applications/tropical-cyclones</u>

Floods

- <u>http://flood.umd.edu</u>
- <u>http://erds.ithacaweb.org</u>
- <u>http://oas.gsfc.nasa.gov/floodmap</u>
- <u>http://floodobservatory.colorado.edu</u>

Homework and Certificate

Certificate of Completion

- Attend all 4 webinar sessions
- Complete all homework assignments
- Certificates will be emailed approximately 2 months after the course finishes, by Marines Martins (<u>marines.martins@ssaihq.com</u>)

Homework

- Answers to homework questions via Google form
- Available at: http://arset.gsfc.nasa.gov/disasters/webinars/disaster-overview-2016
- Assignments (available now)
 - Prerequisite on Fundamentals (Due June 13) deadline extended to June 30
 - Assignment #1: Earthquakes, Tsunamis, Volcanoes, and Wildfire Disasters (Due July 14)
 - Assignment #2: Oil Spills, Storms, Floods, and Landslide Disasters (Due July 14)

National Aeronautics and Space Administration

ARSET Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

🔰 @NASAARSET

Thank You!

www.nasa.gov