Source-Differentiated Air Quality System to Safeguard the Respiratory Health of US Military Personnel Deployed in Southwest Asia, Djibouti, and Afghanistan

Meredith Franklin
University of Southern California
NASA HAQ Applications Program
September 10-11, 2019
HAQ-ROSES 80NSSC19K0225
Airborne Exposures During Deployment

• Desert dust and sand:
 • Afghanistan, Iraq, Kuwait include desert regions
 • Dust storms 50-100 days/year in Iraq, spring and summer
 • Sand carries fungal spores, plant/grass pollens [allergens]

• Combustion sources:
 • Poorly controlled emissions from motor vehicles (old diesel), unregulated industrial sources
 • Burn Pits:
 • Open-air waste burning was the primary means of solid-waste management
 • At large bases ran continually - visible smoke
Burn Pits

- Trash includes batteries, equipment, plastics, medical and human waste. Jet fuel is typically used as an accelerant.
- The largest burn pits were located in Iraq and Afghanistan (also in Kuwait)
- The practice started during post-9/11 invasion of Iraq and continues in combat zones today.
- Action was not taken until 2011 to provide guidance to move pits away from areas where troops are located.
- Many burn pits replaced with proper incinerators after 2011.

At Balad Air Base ~150 tons of waste burned per day 2003-2008, continued to 2011 Afghanistan’s bases were burning up to 400 tons per day at their peak
Burn Pits: Air Quality

- Chemicals and byproducts emitted from burn pits include volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and PM with varying compositions including those heavy metals.

- Very few ground-level sampling campaigns conducted during burn pit activity
 - Report by DOD, Enhanced Particulate Matter Surveillance Program – Engelbrecht et al., 2008
Health Effects

- Military personnel show higher rates of common respiratory illnesses like asthma and emphysema, as well as rare lung disorders.
 - Occupational and base-related exposures in addition to regional and off-base industrial source exposures
- Dust storms are an issue for respiratory illnesses, affecting both military and local residents.
Study Objectives

• Primary objectives
 • To develop exposures to fine particulate matter (PM$_{2.5}$) during deployments to the U.S. bases and other locations in Central Asia (Afghanistan and Kyrgyzstan), Southwest Asia (Iraq, Kuwait, Qatar, and United Arab Emirates) and Africa (Djibouti)
 • MAIAC 1x1 km coupled with meteorology (including visibility), MERRA2, land use, and available PM$_{2.5}$ mass concentrations in region
 • To develop source-specific exposures of PM$_{2.5}$ speciation (sulfate, nitrate, EC, OC, dust)
 • MISR 4.4x4.4 km coupled with meteorology, MERRA2, land use and available PM$_{2.5}$ speciation concentrations in Kuwait (Qatar being sited)
 • To develop and implement a software tool for deployment-related exposure assessment
 • To be used in clinical and research settings by the VA and DoD
Study Objectives

• Secondary/exploratory objectives
 • To identify locations of and assess duration of burn pit exposures
 • Examine MODIS fire and VIIRS active fire in proximity to base locations with burn pits
 • Apply density based clustering to identify persistent sources of burning, minimizing distance between base and identified fires (Franklin et al ES&T 2019)
 • To conduct epidemiological assessment with VA partners (CSP#595) and Kuwait hospital admissions and mortality records
 • To forge partnership with State Dept and provide exposures for embassies in SADA region
 • To provide use-case for MAIA mission (Kuwait a proposed secondary target area)
Declassified locations of 1,274 military bases
Approximately 2,700,000 Post 9-11 Gulf War Era veterans have been deployed at these locations since 2001 (RAND)
- Burn pits were used at 1,101 of the bases
- Mostly in Iraq and Afghanistan
MODIS FIRE/VIIRS

- MODIS 1km available for study period
- Terra and Aqua provide two snapshots per day
- Only provides fire radiative power
- VIIRS 375m only available 2012-present

Iraq 2008
Historical Military Air Quality Monitoring

- US Army monitoring PM$_{10}$, VOCs, PM metals. Only 60 samples, results not conclusive (max concentrations PM$_{10}$ 225 ug/m3)
- DOD study measured PM$_{2.5}$ and PM$_{10}$ at 15 sites in 2006-2007
 - Concentrations consistently exceeded standards (150ug/m3 PM$_{10}$, 35 ug/m3 PM$_{2.5}$)
 - High levels of lead, arsenic, cadmium, zinc
Air Quality Monitoring in Kuwait

- Characterization of Particulate Matter (PM$_{10}$ and PM$_{2.5}$ 2004-2006) for three Sites in Kuwait
 - PM$_{10}$ ranged from 65.8 to 92.8 μg/m3, PM$_{2.5}$ ranging from 30.8 μg/m3 to 37.6 μg/m3
- Kuwait EPA conducted a study with 10 monitoring sites in 2011-2012
- Since 2018 PM$_{2.5}$ and PM$_{10}$ at two sites by co-I Petros Koutrakis’ group (daily mass and XRF, ions, ICPMS).
 - One co-located at AERONET site (Kuwait U), other south of Kuwait city.
Other Air Quality Monitoring in Region

- We have acquired data from ~75 sites in Iran (1996-2016) for PM$_{2.5}$ and some gases
- OpenAQ data from US Embassies in the region provide PM$_{2.5}$ data from 2017-present
Satellite-Derived PM\(_{2.5}\) from MAIAC

- Using MAIAC AOD, visibility stations and surface PM\(_{2.5}\) sites generated 1x1 km PM\(_{2.5}\) averaged over the entire study period.
- Updating with additional PM\(_{2.5}\) data from Iran and openAQ
Satellite-Derived PM$_{2.5}$ from MAIAC

- Model performance:
 - 10-fold CV R^2 of stage 1 predictions = 0.81.
 - 10-fold CV R^2 of stage 4 model for weekly PM$_{2.5}$ predictions = 0.75.
- Weekly PM$_{2.5}$ concentrations for Iraq and Kuwait at 1 km2 resolution during 2001-2018 have been predicted and preliminary database sent to VA.

Shown: MAIAC AOD and mean PM$_{2.5}$ concentrations ($\mu g/m^3$) in each 1km2 grid for January 2001 over Kuwait
Speciated PM$_{2.5}$ from MISR

- The new(ish) 4.4 km MISR product (Garay et al ACP, 2017) provides total AOD, particle types and mixtures:
 - Fractions to distinguish size (small, medium large) (Franklin et al. RSE, 2017)
 - Mixtures to distinguish size and type (spherical, non-spherical, absorbing, non-absorbing, dust) (Kahn and Gaitley JGR, 2015)
 - MISR AOD raw and additional data provide observations under bright surfaces (not available from MODIS/MAIAC) (Franklin et al RS, 2018)
Speciated PM$_{2.5}$ from MISR

- Trained machine learning models in California using CSN data linked with coincident MISR mixtures and products

Model performance:
- CV R2 nitrate and sulfate (regional sources) ~0.7
- CV R2 EC (vehicle exhaust) 0.59
- CV R2 dust 0.37

Note: not enough data for OC prediction (biomass burning/burnpits)
ARL

• Started at 3, we are at 4+ (6 months in)
 • Meeting with VA end users (May 2019) and delivered prototype PM$_{2.5}$ data in July 2019

• Next step: implement MISR source-specific exposure methods in SADA region
 • Test on two PM$_{2.5}$ speciation sites in Kuwait, working on siting 1 more in Qatar

• Next step: prototype development of software tool using R Shiny integrated with leaflet for mapping
 • VA needs tool to be on their secure servers, connected to exposure database that is stored locally
Acknowledgements

Harvard School of Public Health
• Petros Koutrakis (co-I)
• Joel Schwartz

Veterans Affairs
• Eric Garshick (co-I)

Jet Propulsion Laboratory
• Olga Kalashnikova (co-I)
• Dave Diner

University of Southern California
• Ken Chau
• Yifang Zhang

Washington University
• Randall Martin

Kuwait EPA
Data Integration

<table>
<thead>
<tr>
<th>Data</th>
<th>Data source</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOD</td>
<td>NASA MAIAC</td>
<td>1km</td>
<td>Daily</td>
</tr>
<tr>
<td>Visibility</td>
<td>United States air force airport</td>
<td>780 sites</td>
<td>Hourly</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Kuwait: 2004-2005, 2017-now</td>
<td>Harvard</td>
<td>Around 2000 samples</td>
</tr>
<tr>
<td></td>
<td>Kuwait: 2017-2018</td>
<td>EPA U.S. Embassy Kuwait</td>
<td>1 site</td>
</tr>
<tr>
<td></td>
<td>OpenAQ</td>
<td>US Embassies</td>
<td>Hourly</td>
</tr>
<tr>
<td></td>
<td>Iran</td>
<td>Iran cooperator</td>
<td>Hourly</td>
</tr>
<tr>
<td>Dust</td>
<td>Dust Surface Mass Concentration</td>
<td>NASA MERRA-2</td>
<td>Daily</td>
</tr>
<tr>
<td></td>
<td>Dust Extinction AOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dust Scattering AOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dust Column Mass Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td>NDVI</td>
<td>NOAA AVHRR</td>
<td>5 km</td>
</tr>
<tr>
<td></td>
<td>Road density</td>
<td>OpenStreetMap</td>
<td>1 km</td>
</tr>
<tr>
<td></td>
<td>Distance to industrial area</td>
<td>U.S. Geospatial-Intelligence Agency</td>
<td>1 km</td>
</tr>
<tr>
<td></td>
<td>Elevation</td>
<td>NOAA</td>
<td>1 arc-minute</td>
</tr>
</tbody>
</table>
Data Integration

<table>
<thead>
<tr>
<th>Data</th>
<th>Data source</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteorological data</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Temperature at 2 m</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>U-wind speed at 10 m</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>V-wind speed at 10 m</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Instantaneous 10m wind gust</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Dew point temperature at 2m</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Total precipitation</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Surface pressure</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Downward UV radiation</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Planetary boundary layer height</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Total cloud cover</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Low cloud cover</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Medium cloud cover</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>High cloud cover</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>High vegetation cover</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Low vegetation cover</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Forecast albedo</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Evaporation</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>ERA-5 Reanalysis produced by European Centre for Medium-Range Weather Forecasts</td>
<td>31 km</td>
<td>Daily</td>
</tr>
</tbody>
</table>
Military Health Studies – Current and Future

• VA Cooperative Study #595 Pulmonary Health and Deployment to Southwest Asia and Afghanistan
 • Estimated 1,400,450 Veterans from the Defense Manpower Data Center (DMDC) meet eligibility requirements
 • Served during the Post-9/11 Gulf War Era in a service branch that had land-based deployments (Air Force, Army, Marine Corps) (2.7M deployed)
 • Deployed to Afghanistan, Kyrgyzstan, Iraq, Kuwait, Qatar, United Arab Emirates, or Djibouti after October 1, 2001
 • Questionnaire, spirometry (lung function), asthma
 • Current recruitment plans up to 2022, expected enrollment ~5,000 participants (on target)

• Millennium cohort study (DoD, ongoing since 1991) N~200K
Exposure Assessment Tool
Kuwait Health Studies – Current and Future

• In collaboration with Kuwait Ministry of Health, examination of mortality records 2000-2016 (Achilleos et al, 2019) in an acute health study

• Found on low visibility days that the mortality rate higher than on low visibility days

• Dust storm days had even higher rates of death

• Future work planned to use these data with the estimated PM$_{2.5}$ and speciation concentrations
Health Studies – Current and Future

• VA Cooperative Study #595 Pulmonary Health and Deployment to Southwest Asia and Afghanistan
 • Estimated 1,400,450 Veterans from the Defense Manpower Data Center (DMDC) meet eligibility requirements
 • Served during the Post-9/11 Gulf War Era in a service branch that had land-based deployments (Air Force, Army, Marine Corps) (2.7M deployed)
 • Deployed to Afghanistan, Kyrgyzstan, Iraq, Kuwait, Qatar, United Arab Emirates, or Djibouti after October 1, 2001
 • Questionnaire, spirometry (lung function), asthma
 • Current recruitment plans up to 2022, expected enrollment ~5,000 participants (on target)

• Millennium cohort study (DoD, ongoing since 1991) N~200K
• Kuwait EPA studying health effects in collaboration with Kuwait Ministry of Health