

Chemical Data Assimilation and Analog-Based Uncertainty Quantification to Improve Decision-Making in Public Health and Air Quality

Rajesh Kumar NCAR, Boulder, CO

National Center for Atmospheric Research (NCAR) Research Application Laboratory (RAL) National Security Application Program (NSAP)

- Project team
- Project goal and objectives
- Tasks

Project Team

Principal Investigator:	Rajesh Kumar (NCAR/RAL, Boulder CO) / Luca Delle Monache (Scripps/UCSD)
Co-Principal Investigator:	Gabriele Pfister (NCAR/ACOM, Boulder CO)
Co-Investigators:	Stefano Alessandrini (NCAR/RAL, Boulder CO) Barry Baker ((UMD, College Park, MD) Jamie Bresh (NCAR/MMM, Boulder CO) Irina Djalalova (CU Boulder, Boulder CO) David Edwards (NCAR/ACOM, Boulder, CO) Zhiquan Liu (NCAR/MMM, Boulder CO) Youhua Tang (UMD, College Park, MD)
Collaborators:	Pius Lee (NOAA/ARL, College Park, MD) Pablo Saide (UCLA, Los Angeles, CA) James Wilczak (NOAA/ESRL, Boulder CO)

Project Goal & Objectives

<u>Goal:</u>

- National Oceanic and Atmospheric Administration (NOAA) / National Centers for Environmental Prediction (NCEP) air quality (AQ) forecasting system is a key tool for decision makers across the U.S. to protect the public from poor AQ
- To enhance this decision-making activity this project aims to improve the accuracy of NOAA/NCEP short-term predictions of ground-level ozone (O₃) and particulate matter less than 2.5 µm in diameter (PM_{2.5}) and to provide reliable quantification of their uncertainty

Objectives:

- Improve initialization of NOAA/NCEP Community Multiscale AQ (CMAQ) model through chemical data assimilation of satellite retrieval products and in-situ observations with the Community Gridpoint Statistical Interpolation (GSI) system
- 1 Improve CMAQ prediction accuracy and reliably quantify their uncertainty with analog-based post-processing methods

Main Tasks

- (1) Generating the analysis and deterministic forecasts of O_3 and $PM_{2.5}$
- (1) Analog-based methods for deterministic and probabilistic predictions of O_3 and $PM_{2.5}$
- 2 Two-dimensional gridded deterministic and probabilistic predictions
- ③ Transition to operations of the new AQ forecasting capability

Current Status: Task 1

Generating the analysis and deterministic forecasts of O₃ and PM_{2.5}

- Chemical transport modeling and emission processing
- Assimilation with the GSI/CMAQ system of:
 - Aerosol optical depth from NASA Aqua/Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instruments
 - Retrieval of carbon monoxide from the NASA/Terra Measurements Of Pollution In The Troposphere (MOPITT)
 - Surface observations of PM_{2.5} (and possibly of ground-level ozone) from the AIRNow network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) stations, and the Clean Air Status and Trends Network (CASTNET)

CMAQ model configuration

CMAQ version – 5.1 CMAQ resolution – 12 km² Emissions – NEI 2011 Biogenic emissions – Online (BEIS) Photolysis rates –Online Other configuration option – Consistent with NAQFC Initial conditions – Use previous CMAQ run Boundary conditions – constant similar to the NAQFC

Background error generation

Ran 24-h CMAQ forecasts for the FRAPPE period (15 Jul -15 Aug 2014) and fed to GEN_BE to generate BEC matrix National Air Quality Forecasting Capability Domain

GSI/CMAQ code development

CMAQ-MODIS AOD comparison

We can tune the background and observation errors to improve agreement between MODIS and CMAQ AOD (with assimilation) but our objective here is to represent the model errors realistically.

NSAP/RAL/NCAR – National Security Applications Program

[Kumar et al., revised submission, JGR, 2018] ⁹

- The assimilation of MODIS AOD in CMAQ model improves the correlation coefficient between the model and observed PM_{2.5} by ~48-67% and reduces the mean bias by ~20-38%.
- Large improvements are seen at more than 80% of the AirNOW sites.

NSAP/RAL/NCAR – National Security Applications Program

[Kumar et al., revised submission, JGR, 2018] ¹¹

NCAR Improving air quality forecasts in Delhi 🦉

Assimilation of satellite AOD retrievals can significantly help developing countries in air quality management.

Current Status: Task 2

Analog-based methods for deterministic and probabilistic predictions of O_3 and $PM_{2.5}$

- Improving deterministic predictions with analog-based post-processing methods
- Providing uncertainty quantification of O₃ and PM_{2.5} predictions, that is crucial information for effective decision-making to protect the public health

References:

Delle Monache et al., Monthly Weather Review 2011, 2013; Djalalova et al., Atmospheric Environment, 2015

NSAP/RAL/NCAR – National Security Applications Program

Training Period

Figure adapted from Delle Monache et al. (2013)¹⁴

(deterministic & probabilistic)

Example of 48-h PM_{2.5} probabilistic predictions

AnEn generates forecast quantiles that provide uncertainty quantification

[Delle Monache et al., revised submission, ACP, 2018]

Drastic reduction of CMAQ errors

AnEn error reductions with respect to CMAQ: ~50% RMSE, ~95% BIAS

[Delle Monache et al., revised submission, ACP, 2018]

AnEn, CMAQ output

AnEn generates forecast quantiles that provide information about uncertainty quantification

NSAP/RAL/NCAR – National Security Applications Program

NASA Health and Air Quality Applications Program Review Burlington, Vermont, 18-19 Sep 2018

[Delle Monache et al., revised submission, ACP, 2018] ¹⁷

AnEn, CMAQ verification

AnEn mean reduces CMAQ's BIAS by ~85%

[Delle Monache et al., revised submission, ACP, 2018]

NOA **Current Status: Task 3** NCAR Two-dimensional gridded deterministic and probabilistic predictions PM₂₂, CMAQ, November 12, 2010, 24 hours averaged PM20, CMAQ_Corrected, November 12, 2010, 24 hours averaged (µg m^{~i}) (µug m^{~i}) 45 45 40 40 35 35 30 30 25 25 a b 20 20 L -120 -100 -60 -120 -100 -60 **CMAQ KFAN** PM₂₅, Observation (µug m^*) 50 45

40

35

20 C)

-120

-100

OBSERVATION

-60

Current Status: Task 4

Transition to operations of the new AQ forecasting capability

Transition to operations of PM_{2.5} deterministic predictions:

- Chemical data assimilation system transferred to the research team of NAQFC
- Automatic quality control procedures have been developed to eliminate spurious measurement values
- Analog-based method (for now only simple analog ensemble mean)
- Spreading technique to generate gridded maps
- Running operationally since 20 October 2015
- NOAA/NCEP very satisfied with results
- This subtask is already at ARL 8/9

Reference: Djalalova et al., Atmospheric Environment, 2015

Plans for Coming Year

- Complete development and test of AOD assimilation system; start assimilation of CO and/or surface PM_{2.5}; test new forward operator; manuscript submission
- (2) Complete tests of point-based O_3 predictions and submit manuscript on analogbased methods for both O_3 and $PM_{2.5}$ of point-based predictions
- (3) Development of 2D gridded maps for deterministic O_3 and $PM_{2.5}$ ensemble
- (4) Transition to operations of the new point-based and gridded products

Milestones:

GSI/CMAQ chemical DA, ARL-5 (); analog-based methods, ARL-5 (); 2D maps, ARL-5 (); GSI/CMAQ chemical DA, ARL-6/7 (); analog-based methods, ARL-6/7 (); 2D maps, ARL-6/7 (); all capabilities, ARL-8/9 ()

Thanks! Questions?

New Task

• Title:

"Socioeconomic benefits of improved forecasts on decisionmaking in public health and air quality"

- Period of Performance: 1 October 2016 30 September 2017
- Budget: \$250K
- Team:
 - Jeffrey Lazo (Lead), Luca Delle Monache NCAR
 - James Hammitt, Lisa Robinson Harvard Center for Risk Analysis
 - Lauraine Chestnut, David Mills Abt Associates

MODIS Observations for Assimilation

NASA

MODIS AOD from NASA neural network at 10 km resolution provided by GMAO is used

Cost function and gradient minimization

Tangent Linear Test of Forward Operator

The tangent linear code "P" is tested against the forward operator code "Q" using the Taylor-Lagrange formula:

$$\frac{Q(C+h*C)-Q(C)}{P(h*C)}=1$$

C: CMAQ aerosol chemical composition. h: perturbation factor (0.1 to 10⁻⁹). h = 0.10E+00 ratio = 0.1000000E+01

h = 0.10E-01 ratio = 0.1000000E+01

h = 0.10E-02 ratio = 0.1000000E+01

h = 0.10E-03 ratio = 0.1000000E+01

h = 0.10E-04 ratio = 0.1000000E+01

h = 0.10E-05 ratio = 0.1000000E+01

h = 0.10E-06 ratio = 0.1000000E+01

h = 0.10E-07 ratio = 0.1000000E+01

h = 0.10E-08 ratio = 0.99999997E+00

h = 0.10E-09 ratio = 0.10000004E+01

Adjoint Test

Adjoint code "P^T" is tested against TL code "P" using the following adjointness relation:

 $\langle P(C+h*C), P(C+h*C) \rangle = \langle (C+h*C), P^T P(C+h*C) \rangle$

h = 0.10E+00 LHS = 0.32998862E+00 RHS = 0.32998862E+00 h = 0.10E-01 LHS = 0.32998862E-02 RHS = 0.32998862E-02 h = 0.10E-02 LHS = 0.32998862E-04 RHS = 0.32998862E-04 h = 0.10E-03 LHS = 0.32998862E-06 RHS = 0.32998862E-06 h = 0.10E-04 LHS = 0.32998862E-08 RHS = 0.32998862E-08 h = 0.10E-05 LHS = 0.32998862E-10 RHS = 0.32998862E-10 h = 0.10E-06 LHS = 0.32998862E-12 RHS = 0.32998862E-12 h = 0.10E-07 LHS = 0.32998862E-14 RHS = 0.32998862E-14 h = 0.10E-08 LHS = 0.32998862E-16 RHS = 0.32998862E-16 h = 0.10E-09 LHS = 0.32998862E-18 RHS = 0.32998862E-18

NSAP/RAL/NCAR – National Security Applications Program

NCAR

Spreading method

28

- NCAR To create graphical images of corrected CMAQ PM2.5 forecasts, the forecasted bias calculated at each AIRNow obs location must be spread to every model gridpoint.
- An iterative objective analyses method is used which starts with a very large radius of influence (R=2000km).
- Sbias_k = CMAQ_KFAN_k CMAQ_RAW_k, Mbias_{i,j} = 0
- At each grid point the correction value is calculated as

$$C_{i,j} = \frac{1}{n} \sum \frac{R * R - d * d}{R * R + d * d}$$
 (Sbias_k-Mbias_{i,j}), d

R is radius of influence;

d is the distance from a grid point to the site k inside the circle R;

C_{i,i} is the correction at a grid point;

 $Mbias_{i,j} = Mbias_{i,j} + C_{i,j}$

Summation is done over ALL obs sites k inside the circle R.

• 8 passes with R=2000 ALLAR AR Salar Sa

NCAR AnEn has been successfully applied for:

- Short-term predictions of:
 - 10- and 80-m wind speed, 2-m temperature, etc.
 Delle Monache et al. MWR 2011,2013, Junk et al. MZ 2015
 - Wind power
 - Alessandrini et al. RE 2015, Davo et al. SE 2016
 - Solar GHI Alessandrini et al. SE 2015
 - Load Alessandrini et al. ICEM 2015
 - Air quality predictions (ground level ozone, surface PM_{2.5}) Djalalova et al. AE 2015, Delle Monache et al. JGR 2016
 - Tropical cyclones intensity Alessandrini et al. MWR 2016
- Downscaling, resource assessment:

Vanvyve et al. RE 2015, Zhang et al. AE 2015

Wind speed

>

Computationally efficient dynamical downscaling

Available EPA CMAQ O₃ data

- Community Multiscale Air Quality (CMAQ) Modeling System daily run (457 days, 12 UTC), lead time from 0 to 48 hours
- Available variables (O₃, wind speed and wind direction, 2-m temperature, cloud fraction)

Optimization CRPS (Nov. 2014)

Test (62 days, Dec 2014 & Jan 2015)

- 20 historic analog ensemble members
- 4 predictors with different weighting (PM_{2.5}, wind speed and wind direction, 2-m temperature)
- Analog-predictor weights obtained by an optimization algorithm (minimizing CRPS) over November 2014, performed independently at each station
- Possible weights for each predictor: 1, 0.9, 0.8,....0.1, 0.

AnEn configuration (O_3)

Continuous Ranked Probability Score (CRPS) minimization

Training (1-304 days)

Test 153 days, May 2015 - Sep 2015)

- 20 historic analog ensemble members
- 5 predictors with different weighting:
 (O₃, wind speed and wind direction, 2-m temperature, cloud cover)
- Analog-predictor weights assigned are fixed (optimization not done yet)
- Weights assigned: O_3 (0.5), wind speed (0.2), wind dir. (0.1), 2-m temp. (0.1), cloud cover (0.1)

Observation operator design

Aerosol chemical composition to AOD

NOTE: The tangent linear and adjoint of the forward operator has been generated with the automatic differentiation tool TAPENADE, www-tapenade.inria.fr:8080/tapenade/

NSAP/RAL/NCAR – National Security Applications Program

NCAR

NASA Health and Air Quality Applications Program Review Burlington, Vermont, 18-19 Sep 2018

Figure adapted from Delle Monache et al. (2013)³⁶

NASA Health and Air Quality Applications Program Review Burlington, Vermont, 18-19 Sep 2018

Figure adapted from Delle Monache et al. (2013)³⁷

NASA Health and Air Quality Applications Program Review Burlington, Vermont, 18-19 Sep 2018

Figure adapted from Delle Monache et al. (2013)³⁸

Reliable uncertainty quantification

AnEn shows a very good ability to quantify the prediction uncertainty

Probabilistic predictions of O₃ with the analog ensemble

- 1337 AirNow stations with available O₃ measurements
- Hourly concentrations data for the 457-day long period (from 07-01-2014 to 09-30-2015)
- 1045 stations more than 50% of valid data

AnEn, CMAQ verification

AnEn mean improves CMAQ's correlation by ~50%

AnEn, verification (statistical consistency)

AnEn, verification (statistical consistency)

Rank Histogram

Probabilistic predictions of $PM_{2.5}$ with the analog ensemble

- 564 AirNow stations with available PM_{2.5} measurements
- Hourly concentrations data for the 396-day long period (from 07-01-2014 to 07-31-2015)
- Average data availability: 86 %

