

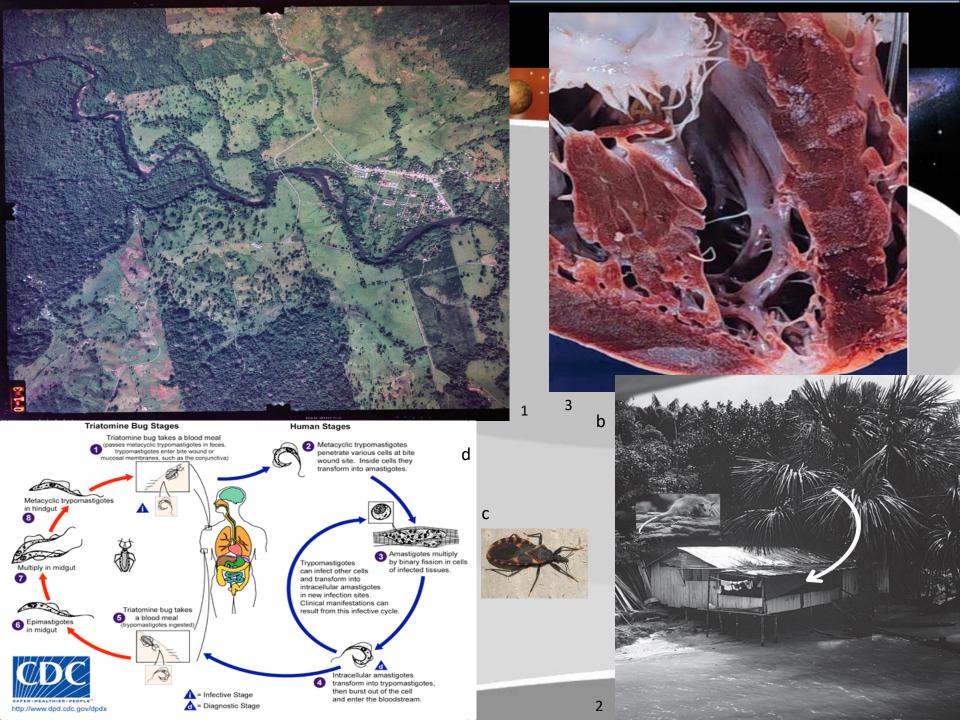
A Thermodynamic Paradigm For Using the Latest Spacebased Geophysical Measurements For Public Health Applications

> Jeffrey C. Luvall Marshall Space Flight Center

Global Public Health Challenges

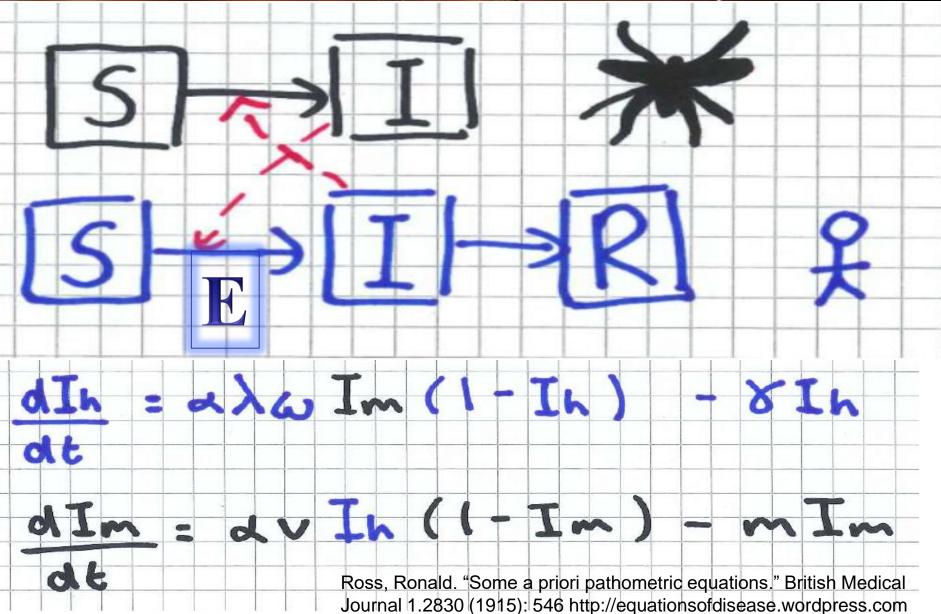
Harmful Algal Blooms

Middle East Dust - Trace Composition


Links between selected elements and some known lung function conditions and diseases

	Desert Dust ≤10 µm	Desert Dust 20-40 µm
Mn (ppm)	450	331.98
Fe (ppm)	25500	18111.61
Co (ppm)	11.72	8.24
Pb (ppm)	17.22	9.45
Cu (ppm)	220	152.64
Cd (ppm)	1.24	0.70
Mg (ppm)	13230.49	10572.70
Al (ppm)	15912.39	13154.60
Ca (ppm)	139577.64	140250.15
Na (ppm)	1098.28	1476.80
Cr (ppm) [but species critical]	181.32	187.30
Zn (ppm)	105.18	72.30
Ni (ppm)	93.28	60.44
Ti (ppm)	1095.52	539.8

Cancer Cancer suspected Cancer & asthma You Can Run, But You Can't Hide


Emphysema Asthma

Juniper Pollen Phenology and Dispersal

1915 Ross Model For Vector-borne Malaria

Fransmission

Strengths Of Satellite Observations

Measures environmental state functions important to vector & disease life cycles (within vector) Precipitation, soil moisture, temperature, vapor pressure deficits, wet/dry edges, solar radiation....

But also the interfaces as process functions: Land use/cover mapping; Ecological functions/structure, canopy cover, species, phenology, aquatic plant coverage.....

And provides a Spatial Context Spatial coverage & topography – local, regional & global...

Lastly, but perhaps the greatest strength: Provides a time series of measurements

Ecological Thermodynamic Paradigm Image: Hermodynamic Paradigm

The epidemiological equations (processes) can be adapted and modified to *explicitly incorporate environmental factors and interfaces*

Remote sensing can be used to measure or evaluate or estimate *both environment (state functions) and interface (process functions).* The products of remote sensing must be expressed in a way they *can be integrated directly into the epidemiological equations.* The desired logical structures must be consistent with thermodynamic and with probabilistic frameworks.

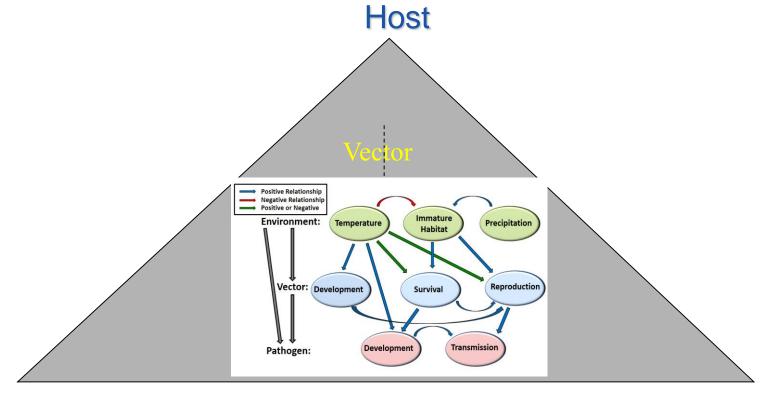
Challenges

Satellite Data

- repeat frequency & spatial resolution
- spectral bands available
- clouds
- life cycle
- cost
- data availability & timeliness of delivery

Public Health & Epidemiology

- availability of data & various sampling issues
- difficulty in getting access to sampling areas
- cost
- understanding of the data provided by satellites


- Define & quantify the multi-factorial relationships

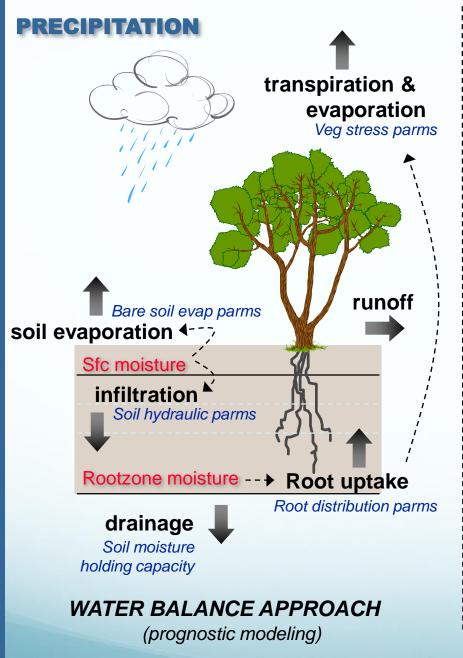
between hosts, agents, vectors and environment

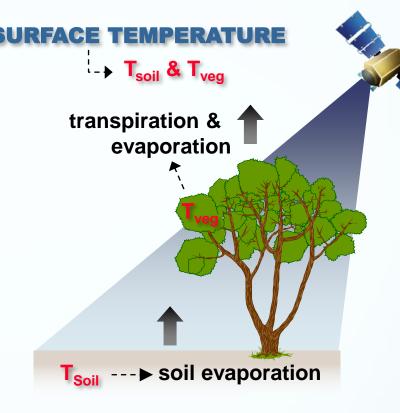
Epidemiologic Triangle of Disease (Vector-borne Diseases)

A multi-factorial relationship between hosts, agents, vectors and environment

Agent (eg, Pathogen)

Environment (Climate & Weather)


Surface **Radiation Budget** $Q^* = (K_{in} + K_{out}) + (L_{in} + L_{out})$ $Q^* = Net Radiation$ $K_{in} = Incoming Solar$ $K_{out} = Reflected Solar$ L in = Incoming Longwave L_{out} = Emitted Longwave


Surface Energy Budget $Q^* = H + LE + G$

H = Sensible Heat Flux LE = Latent Heat Flux G = Storage (maybe + or -)

Surface Temperature

$$T_s = T_a + \frac{R_b}{C_r} \left(R_n - E \right)$$

Given known radiative energy inputs, how much water loss is required to keep the soil and vegetation at the observed temperatures?

ENERGY BALANCE APPROACH

(diagnostic modeling)

Martha C. Anderson, et al. USDA-Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Beltsville, MD

Ag and Forest Meteorology, May 2014

Vectorial Capacity

$VC = ma^{2}bp^{N}$ -log(p)

variable	definition			
m	Mosquito:vertebrate density			
а	Man biting rate of mosquito (alternatively, contact rate)			
b	Vector competence (% mosquitoes that will become infectious)			
р	Mosquito mortality (average lifespan)			
N	EIP (time it takes for virus to be transmitted by a mosquito)			

Figure 5: Vectorial Capacity (VC) equation and variable definitions.

Potentially, An Increased Risk of Transmission

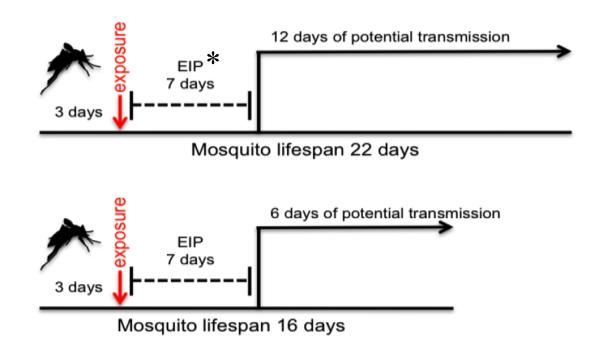
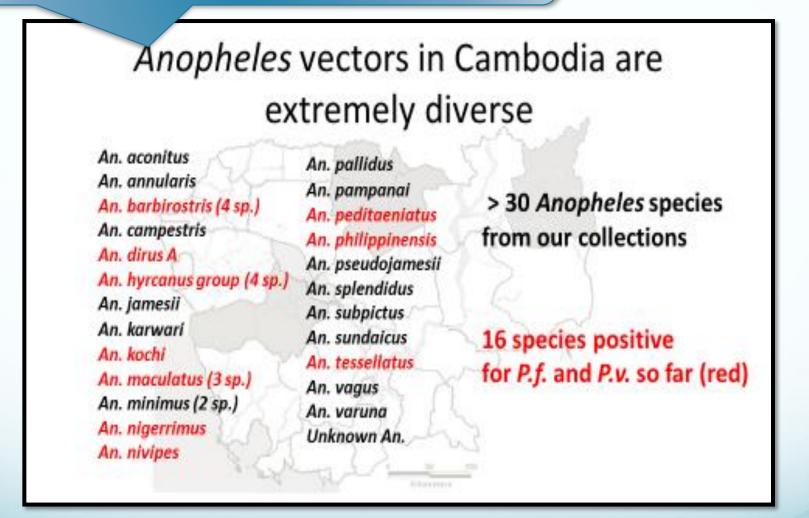
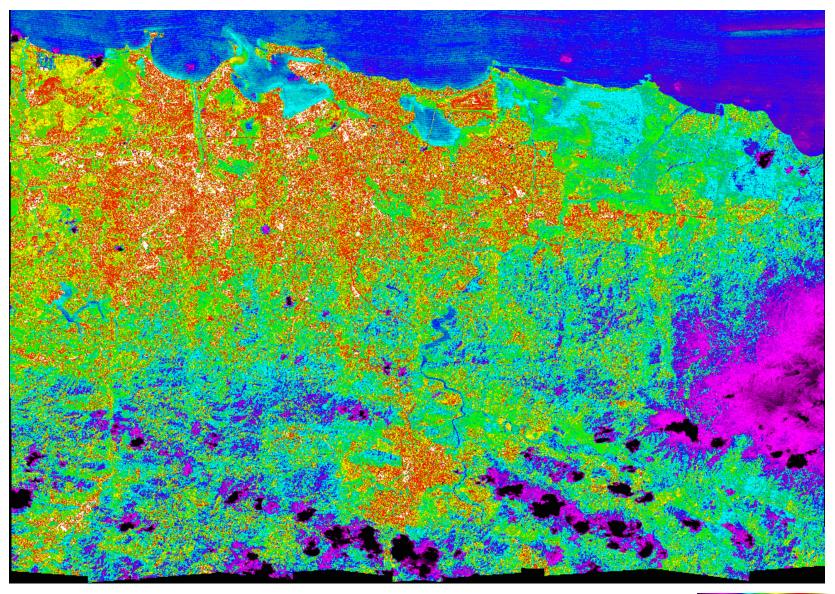
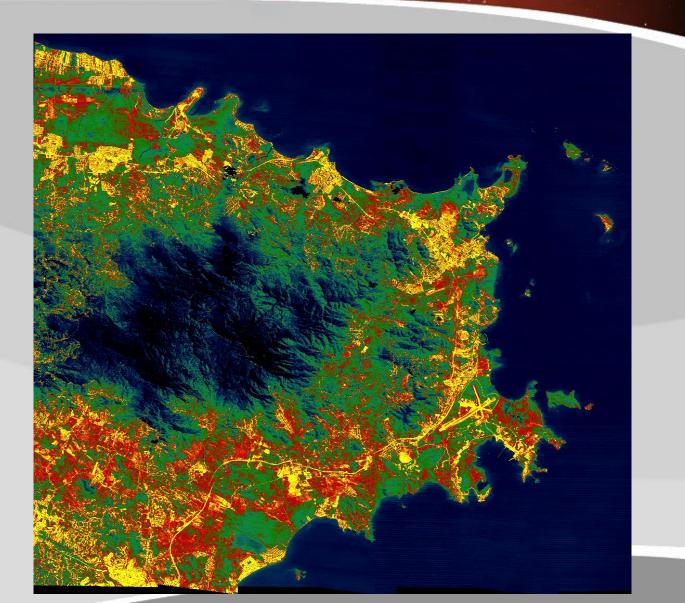



Figure 8 (from Christofferson & Mores 2016): Schematic demonstrating the impact of mosquito mortality on the cumulative transmission potential of an arbovirus.

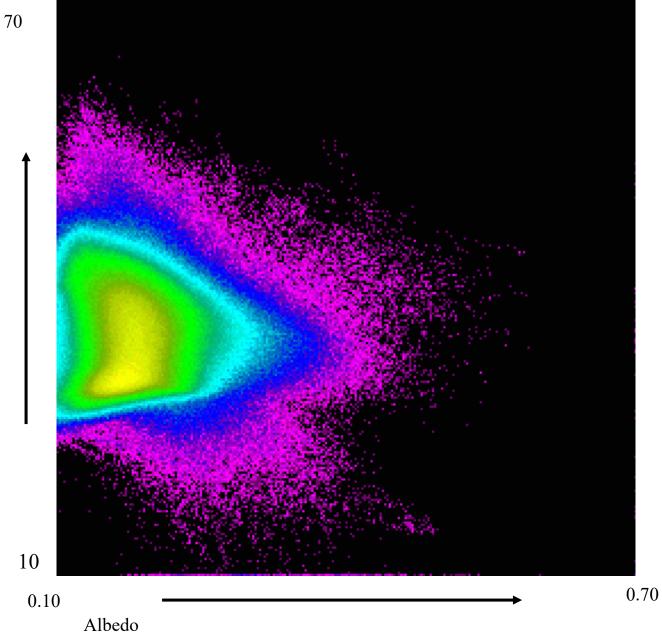
*Extrinsic Incubation Period (EIP). This process is known to be influenced by both intrinsic (such as viral strain and/or mosquito population) and extrinsic factors (such as temperature and humidity)


Plasmodium falciparum is a protozoan parasite, one of the species of Plasmodium that cause malaria in humans. (P vivax was also present in Cambodia)

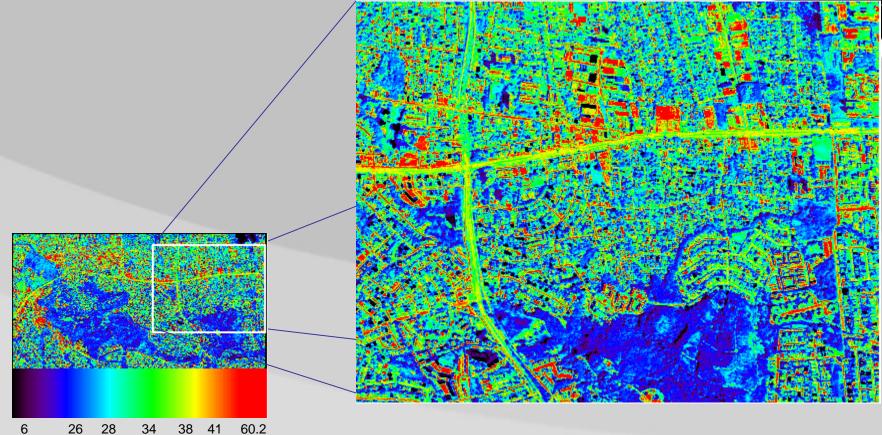
Robert J. Novak, PhD University of South Florida College of Public Health Department of Global Health


Environmental Surveillance and Monitoring System

San Juan F5 Mosaic Temperature



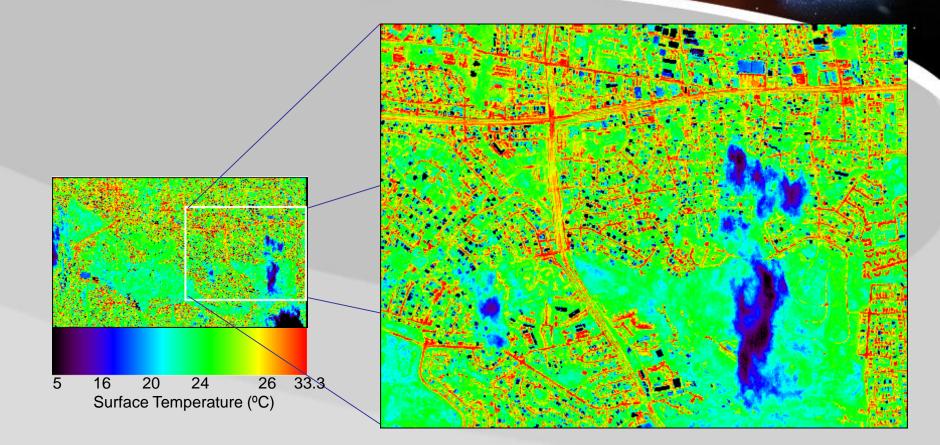
Puerto Rico 10 m ATLAS Thermal Data


San Juan Puerto Rico Albedo vs Temperature

Temperature

oC

furface Temperature Day: Flight 1 Line 23 Hato Rey



Surface Temperature(°C)

Luvall et al. 2004

Surface Temperature at Night: Flight 2 Line 23 Hato Rey

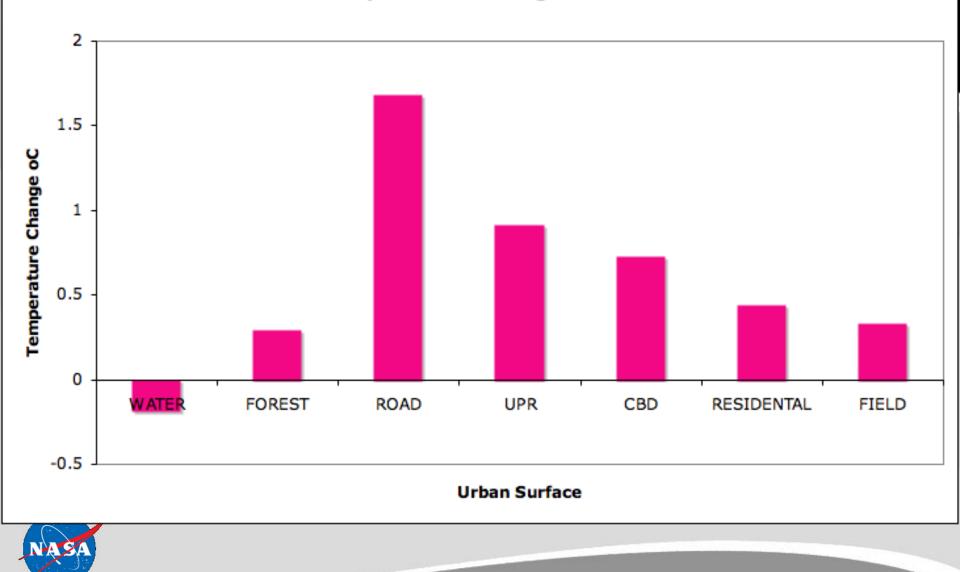
Thermal Response Number

TRN = Q*/delta T

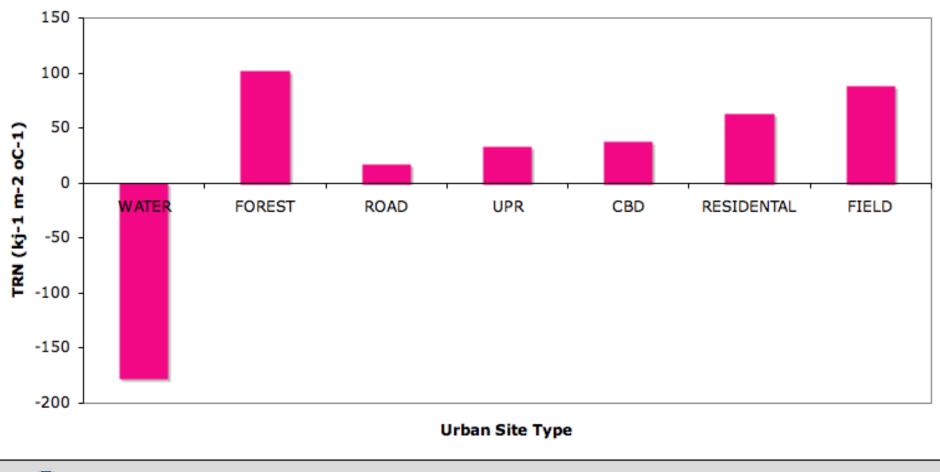
where:

Q* = net radiation delta T = change in temperature

- Uses the change in surface temperature between 2 measurement times
- Uses surface net radiation as amount of energy available the surface for partitioning


■ Produces a quantifiable value (kj m-2 oC -1)

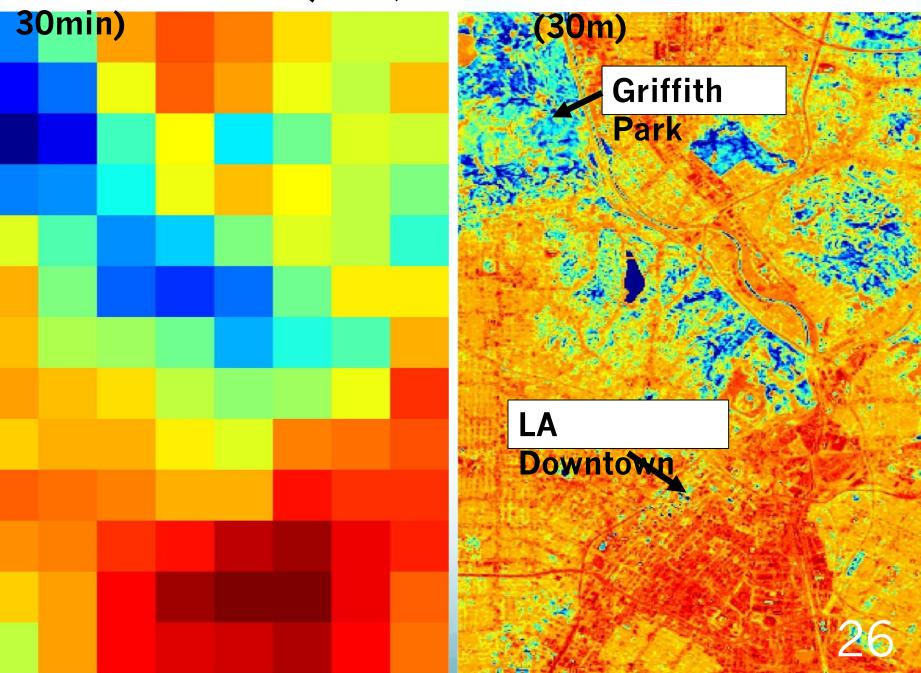
Allows the classification of land use in terms of energy partitioning Luvall & Hobo 1989



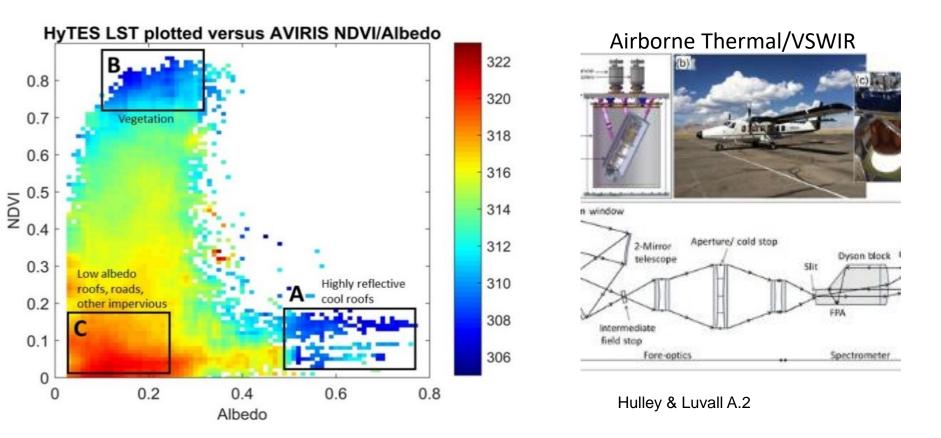
Surface Temperature Change over 9 Minutes

100

San Juan, PR Thermal Response Numbers


A High Spatio-temporal Resolution Land Surface Temperature (LST) Product for Urban Environments

Glynn Hulley¹, and Jeffrey Luval², Iphigenia Keramitsoglou³, Panagiotis Sismanidis³ ¹Jet Propulsion Laboratory, California Institute of Technology ²NASA Marshall Space Flight Center ³National Observatory of Athens (NOA)


A.2 ROSES-2017 Land-Cover/Land-Use Change

NASA-NOA Urban LST

HUTS: High Resolution Urban Thermal Sharpener Dominguez et al. 2011

$$\begin{split} LST_{sharp} &= p_1 NDVI^4 + p_2 NDVI^3 \cdot \alpha + p_3 NDVI^2 \cdot \alpha^2 + p_4 NDVI \cdot \alpha^3 + \\ p_5 \alpha^4 + p_6 NDVI^3 + p_7 NDVI^2 \cdot \alpha + p_8 NDVI \cdot \alpha^2 + p_9 \alpha^3 + p_{10} NDVI^2 + \\ p_{11} NDVI \cdot \alpha + p_{12} \alpha^2 + p_{13} NDVI + p_{14} \alpha + p_{15} + \\ \end{split}$$

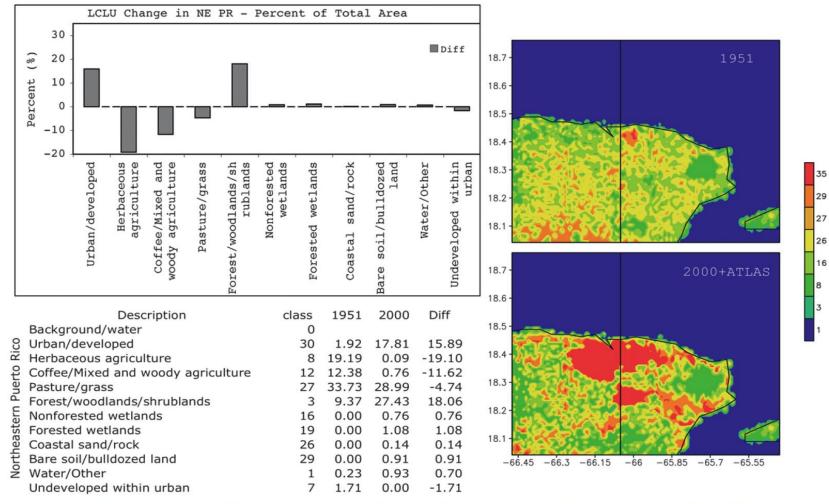


FIG. 3. (right) Map showing the LCLU specifications in northeastern Puerto Rico for (top) 1951 and (bottom) 2000; 2000 information is complemented with remote sensing data obtained from the ATLAS sensor. The thick solid vertical line represents the location of the north–south vertical cross section in Figs. 8 and 9. (left) (top) Histogram of historical LCLU changes in percent of total area covered from 1951 to 2000 and (bottom) description of the most relevant vegetation and land classes with percent change and conversion rates.

Comarazamy, Daniel E, Jorge E Gonz‡lez, Jeffrey C Luvall, Douglas L Rickman, and Robert D Bornstein. 2013. "Climate Impacts of Land-Cover and Land-Use Changes in Tropical Islands Under Conditions of Global Climate 28 Change."Journal of Climate 26 (5): 1535–50. doi:10.1175/JCLI-D-12-00087.

RESILIENT URBAN ENVIRONMENTS Grand Challenges

Urban Climate Modeling & Observation Grand Challenges

- Storm surges modeling and prediction
- Tropical and extra-tropical storms in cities
- Modeling and observations of urban flooding
- Modeling and observations of extreme heat events in cities
- Boundary layer and canopy layer urban heat islands
- Modeling and observation of surface energy and water balances
- Flows and dispersion in the urban canopy layer
- Modeling and observation of clouds-aerosol interactions in UBL flows
- > Air quality/aerosols/radiative transfers in the urban boundary layer.

Knowledge Transfer & Applications Grand Challenges

- Climate change mitigation & adaptation in urban environments
- Bioclimatology and public health
- Urban design and planning with climate
- Design for resiliency
- > Energy supply and demand in cities the role of urban climates
- Eco-system services and urban environments
- > Socio-economics aspects of urban climate.

Cyber-Informatics Grand Challenge

- > Climate information services for cities
- Big data for urban climate studies
- > Advance computational processes for high resolution weather and climate modeling
- > Sensing challenges for complex urban environments
- > Citizen driven sensing and informatics.

WORKING GROUP GOALS

To leverage ICUC10 to conduct a comprehensive survey study and for exploring solution pathways to the grand challenges in representing <u>resilient</u> <u>urban environments</u> in terms of:

- physical processes
- modeling and observational strategies
- socio-economic impacts
- > alternatives for resiliency, and public outreach.

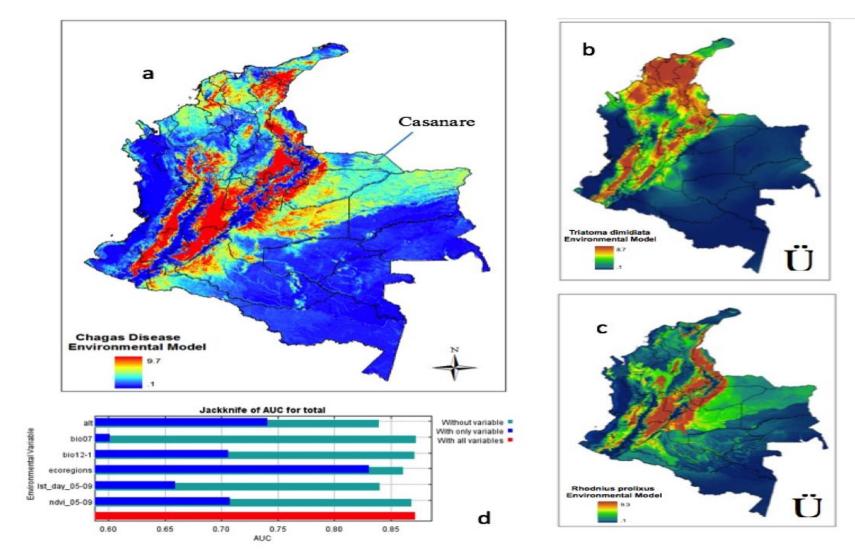
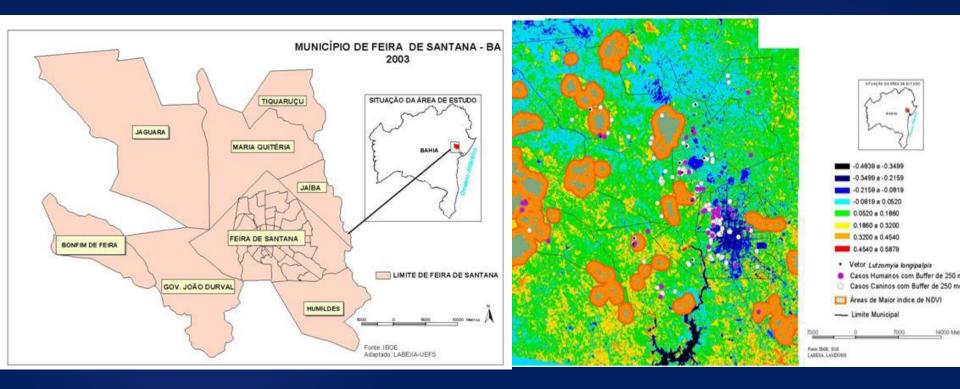


Figure 4. Maxent generated risk surfaces for Colombia generated from national scale data on Chagas disease (a) vector distribution (b, c). Note unique but overlapping geospatial ranges for Triatoma dimidiata and Rhodnius prolixus. Maxent generated Jackknife results (d) show the relative influence of the most significant environmental variables in producing probability map surfaces for Chagas disease.

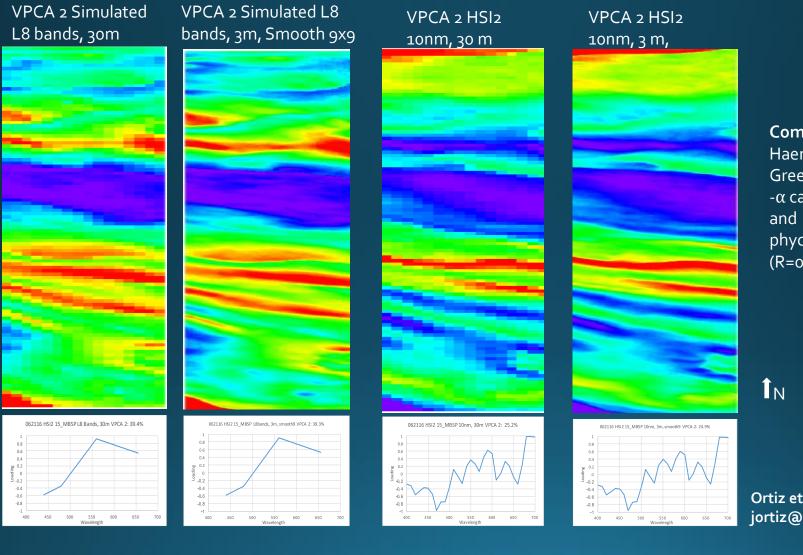

NASA

Malone, J. B. 2005. Biology-based mapping of vector-borne parasites by

Geographic Information Systems and Remote Sensing. Parassitologia 47:27-50.

Feira de Santana VL

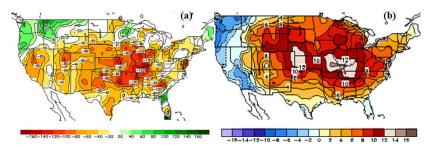
NDVI and visceral leishmaniasis cases, seropositives dogs, sand fly (*Lutzomyia longipalpis*) in Feira de Santana, Bahia, Brazil.

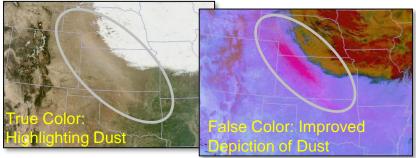

Spectral identification of phytoplankton

from space

- Different types of phytoplankton and cyanobacteria have different pigments.
- Pigments have specific absorption and reflectance patterns
- Spectral shapes can be used to identify different algal and cyanophyte phyla
- Capitalizes on all information available in hyperspectral-resolution spectra
- But, must <u>unmix</u> reflectance spectra

Graphics: Courtesy of NASA/GSFC.


Ortiz et al., (HyspIRI 2015)


Composition: Haematite, Green algae, -α carotene and phycocyanin (R=0.90)

Ortiz et al., (HyspIRI 2017; jortiz@kent.edu)

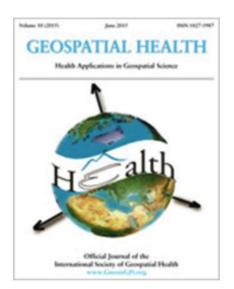
NASA's Short-term Prediction Research and Transition (SPoRT) Center

Temperature and soil moisture anomalies for public health (extreme heat and cold) or environmental applications favorable for disease vectors

Multispectral remote sensing from VIIRS and MODIS for air quality and vegetation applications.

- The SPoRT Center focuses on the transition of "research to applications" for unique NASA, NOAA, and otheragency capabilities
- Current focus is on the use of land surface modeling and remote sensing for a variety of applications
 - Weather Analysis and Forecasting
 - Numerical Weather Prediction
 - Remote Sensing
 - Disasters
- SPoRT is well-suited to combine multiple products to support Public Health applications, through combination of satellite-derived and model-derived information.

Combined, modeling and remote sensing capabilities can support the generation of new Public Health products, alerts, and end training for end users.



Geospatial Health

Health Applications in Geospatial Science

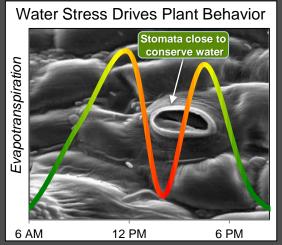
Home	About the Journal	Editorial Board	Current	Archives	Announcements	Contact	

Geospatial Health is the official journal of the International Society of Geospatial Health (www.GnosisGIS.org).

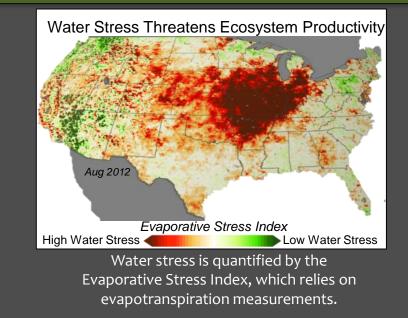
The journal was founded in 2006 at the University of Naples Federico II by Giuseppe Cringoli, John B. Malone, Robert Bergquist and Laura Rinaldi. The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.

Announcements

https://geospatialhealth.net/index.php/gh/index



ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station


Dr. Simon J. Hook, JPL, Principal Investigator

Science Objectives

- Identify critical thresholds of water use and water stress in key climate-sensitive biomes
- Detect the timing, location, and predictive factors leading to plant water uptake decline and/or cessation over the diurnal cycle
- Measure **agricultural water consumptive use** over the contiguous United States (CONUS) at spatiotemporal scales applicable to improve drought
 estimation accuracy

When stomata close, CO2 uptake and evapotranspiration are halted and plants risk starvation, overheating and death.

ECOSTRESS will provide critical insight into *plant-water dynamics* and how *ecosystems change with climate* via *high spatiotemporal* resolution thermal infrared radiometer measurements of evapotranspiration from the International Space Station (ISS).

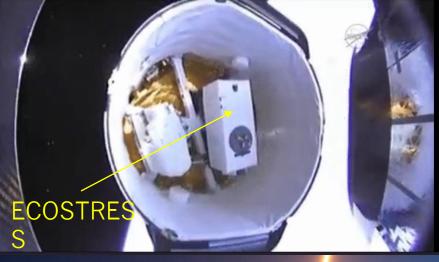
ECOSTRESS launch 06/29/2018 Space-X Falcon 9 Cape Canaveral, Florida, USA

Quick Facts:

- Selected in NASA EVI-2 (2014), Class-D \$30M
- Nominal mission lifetime 1 year
 + 30 day checkout
- Targeted acquisitions: CONUS Cal/Val targets, global cities

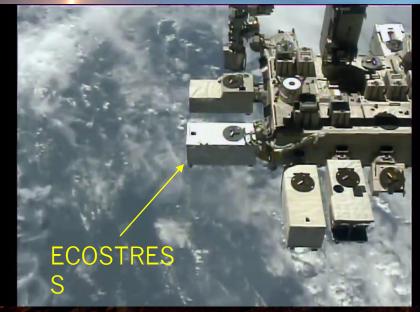
Stage-2 separation

ECOSTRESS


ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ecostress.jpl.nasa.gov

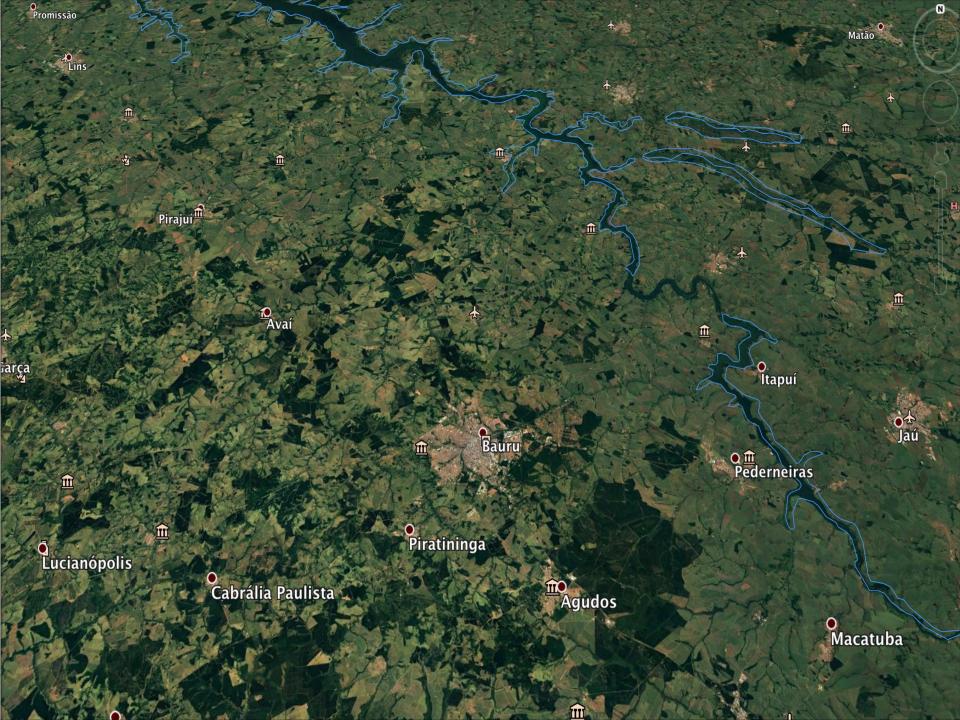
NASA JPL

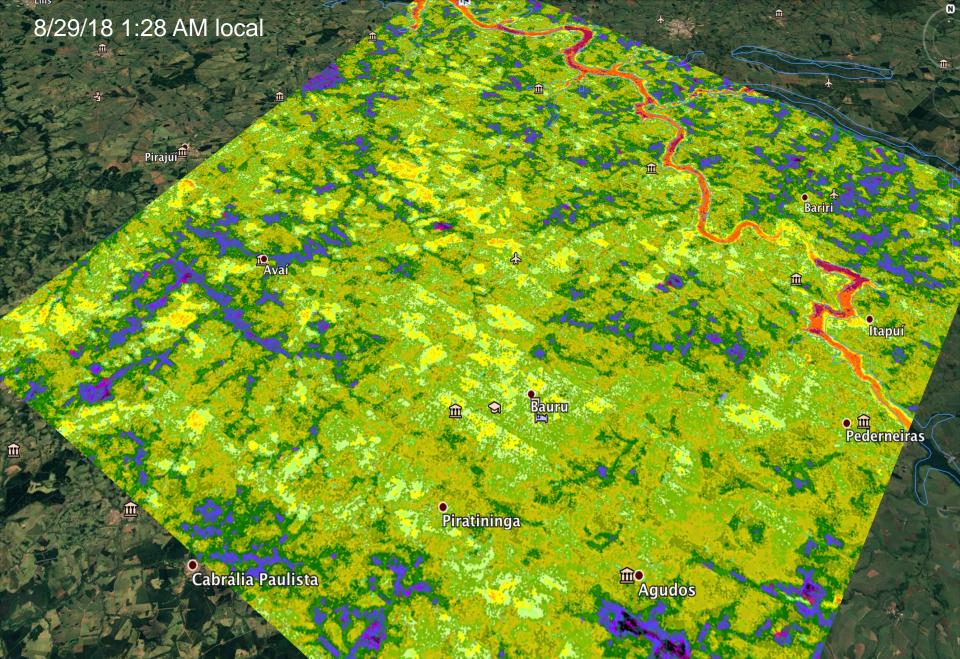
TESLARAT


Dragon separation 06/29/2018

Dragon capture 07/02/2018

Installation on JEM-EF:

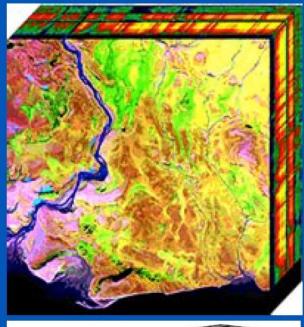


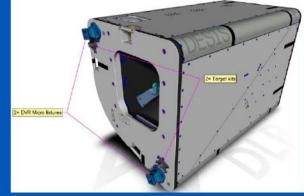


ECOSTRESS Science Data Products

Data Product	Description	Initial Availability to NASA DAAC	Median Latency in Product Availability to NASA DAAC after Initial Delivery	NASA DAAC Location
Level 0	Raw collected telemetry	6 months after IOC	12 weeks	LP DAAC
Level 1	Calibrated Geolocated Radiances	6 months after IOC	12 weeks	LP DAAC
Level 2	Surface temperature and emissivity	6 months after Level 1 data products are available	12 weeks	LP DAAC
Level 3	Evapotranspiration	2 months after Level 2 data products are available	12 weeks	LP DAAC
Level 4	Water use efficiency and evaporative stress index	2 months after Level 3 data products are available	12 weeks	LP DAAC

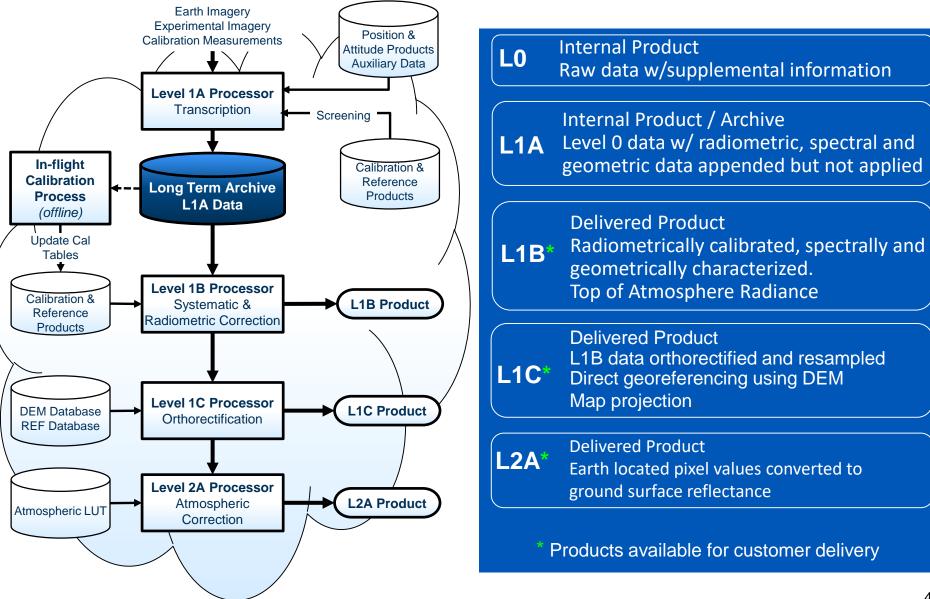
The Land Processes Distributed Active Archive Center (*LP DAAC*) was assigned for ECOSTRESS since KDP-B.


Hyperspectral Data from LEO



- Teledyne and DLR have partnered to build and operate the DLR Earth Sensing Imaging Spectrometer (DESIS) from the Teledyne-owned MUSES Platform on the ISS
- ► DESIS Provides:
 - 30 m GSD, 30 km swath
 - 235 contiguous bands of 2.55 nm
 - Senses from 400 nm to 1000 nm

 Commercially available in Q2, 2018 through Teledyne's Earth Sensor Portal


Ray Perkins, Teledyne Geospatial Solutions 17 October, 2017 NSSTC presentation

Products and Processing Chain

DLR Earth Sensing Imaging Spectrometer(DESIS) "First Look" by DLR - Huntsville, AL Sept. 4, 2018

Processed level 1C (georeferenced and resampled to UTM grid using bilinear interpolation).

- Accuracy <one pixel size w.r.t.</p>
- B 463nm G 553nm R 639nm
- Full Width Half Maximum (FWHM) of ~ 3.5 nm for all bands.

Image supplied by: Jack Ickes, Senior Vice President, Teledyne Brown Engineering Jack.Ickes@teledyne.com

Global Ecosystem Dynamics Investigation Lidar (GEDI) (~2018)

The GEDI instrument is a geodeticclass, light detection and ranging (lidar) laser system comprised of 3 lasers that produce 10 parallel tracks of observations.

GEDI LIDAR

Forest height and vertical structure; habitat quality & biodiversity; Forest carbon sinks & source areas; loss of carbon from extreme events such as fires and hurricanes; parameterization of ecosystem models

Canopy 3D structure that influences snowmelt, evapotranspiration, canopy interception of precipitation. Glacier surface elevation change; lake & river stage; snowpack elevation; coastal tides.

Improved canopy aerodynamic profiles to parameterize weather prediction models. Canopy and biomass products that initialize and constrain climate models; impacts of land use change on climate

Accurate bare earth and under canopy topographic elevations for improved digital elevation models from radar. Calibration of satellite based observations of surface deformation and earthquakes Forest Management & Carbon Cycling

> Water Resources

Weather Prediction

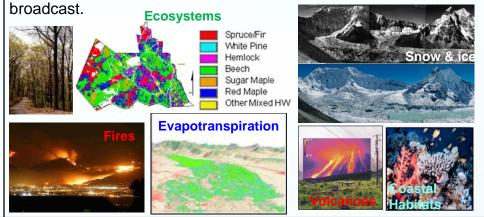
Topography & Surface Deformation

HyspIRI Science and Applications Surface Biology and Geology (SBG)

Key Science and Science Applications

Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/Ice; biomass burning; evapotranspiration.

Ecosystems: Global plant functional-type, physiological condition, and biochemistry including agricultural lands.


Fires: Fuel status, fire occurrence, severity, emissions, and patterns of recovery globally.

Coral reef and coastal habitats: Global composition and status. **Volcanoes**: Eruptions, emissions, regional and global impact. **Natural and resources**: Global distributions of surface mineral resources and improved understanding of geology and related hazards.

Societal Factors: Urban environment, habitability and resources.

Mission Urgency

The HyspIRI science and application objectives are important today and uniquely addressed by the combined imaging spectroscopy, thermal infrared measurements, and IPM direct

Workshop Objectives

Interact with broad science and applications research community

Review science inputs to the Decadal Survey

Review HyspIRI Mission Concept efforts in 2017

Discuss ECOSTRESS TIR mission headed to the ISS

Present new relevant Science and Applications Research

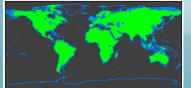
Review results from the U.S. HyspIRI preparatory airborne campaigns

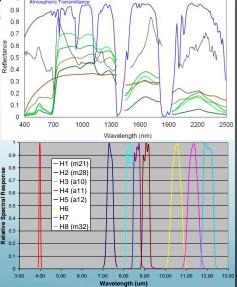
Review AVIRIS-NG VSWIR Asian Environments campaign in India

Support current Decadal Survey process

Information and Registration at: http://hyspiri.jpl.nasa.gov

Measurement


Imaging Spectrometer (VSWIR)


- 380 to 2510 nm in 10nm bands
- 30 m spatial sampling
- 16 days revisit
- Global land and shallow water

Thermal Infrared (TIR):

- 8 bands between 4-12 µm
- 60 m spatial sampling
- 5 days revisit
- Global land and shallow water

IPM-Direct Broadcast

ISS ✓ ECOSTRESS

Airborne data Hyperion (aircraft & UAV)

11/21/2000 to 2/22/2017

GEDI

✓ DESIS

(EMIT & HISUI)

Satellite

Big Data and Deep Learning + Intelligent Payload Module (IPM)= ???

Applications Policy

NASA HEADQUARTERS SCIENCE MISSION DIRECTORATE (SMD)

EARTH SCIENCE DIVISION

DIRECTIVE ON PROJECT APPLICATIONS PROGRAM

29 JUNE 2016

dichael Freilich E Director, Earth Science Division Science Mission Directorate, NASA Headquarters

4.1 Pre-Phase A

Purpose: To enhance overall science objectives and societal benefits from the project's data, and establish characterization of the Communities of Practice and Potential. Initiate a team for the integration and inclusion of applications in the project concept review, and for articulation at the Key Decision Point for Phase A (KDP-A).

Focus: To determine and clarify the applications dimension of the overall project concept and initiation to amass the applications communities (Community of Potential and Community of Practice).

Implementation Activities: Perform assessments to determine what results techniques and products are useful to the applications community, as a result of associated research. A strong characterization of the Communities of Practice and Potential will enhance overall science objectives and societal benefits from the project's data. Produce a Community Assessment and Report.

Guidance: There are a number of people and organizations that may supply information or capabilities such as the Project Manager, the Project Scientists, the Science Team lead, the Project Science Data Systems Representative, the NASA Distributed Active Archive Centers (DAAC), and the Project Applications Coordinator (PAC). Additionally, it is expected that the Program Executive (PE), the Program Scientist (PS) and the Program Applications (PA) lead will be engaged in supporting the project's applications activities.

Space Policy 29 (2013) 76-82

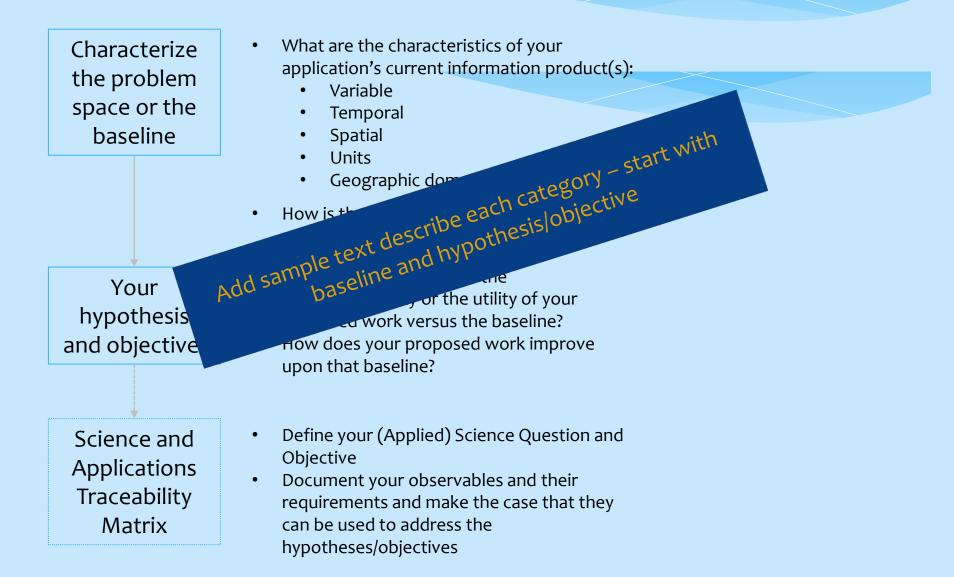
Policy for robust space-based earth science, technology and applications

Molly E. Brown^{a,*}, Vanessa M. Escobar^b, Josef Aschbacher^c, Maria Pilar Milagro-Pérez^d, Bradley Doorn^e, Molly K. Macauley^f, Lawrence Friedl^g

APPENDIX A: PROJECT PRODUCTS BY DEVELOPMENT PHASE

			Science Division	0.000	
2.1 3.117	Pre-Phase A	Phase A	ect Applications Pro	Phases C & D	Phase E
Project Life Cycle Phases	Concept Studies	Concept and Technology Development	Preliminary Design and Technology Completion	Final Design, Fabrication, System Assembly, Test and Launch	Operations and Sustainment
Purpose	Scope the applications portion of the mission concept	Articulate the applications plan for the mission	Implement the plan and build the applications user base	Engage Communities, articulate key applications benefits, support applications readiness and receive feedback	Realize and communicat the applications and societal benefits
	Conduct Mission Studies	Generate a Project Applications Plan	Launch an EA Program	Conduct periodic EA meetings, Hold EA workshops and benchmark meeting	Conduct periodic EA meetings
	Characterize the applications value of the mission	Articulate audiences and implementation activities	Conduct workshops to inform communities about the mission	Receive feedback from EAs	Communicate societal benefits of the mission
	Identify and characterize applications communities	Develop the Applications Traceability Matrix (ATM) to inform the Science Traceability Matrix (STM)	Build awareness and receive input and feedback	Build awareness and encourage applications ideas and readiness	Conduct socioeconomic analysis of select EAs an conduct impact workshop
	Support MCR and design trade-offs	Conduct workshops to inform and build user community	Inform remaining design elements	Identify and maintain key applications for mission communications and outreach	Inform the Community of Practice of the status of the mission, data products, reprocessing, Science Team meetings and other items
Activities	Consult with other projects to scope approaches to applications	Gather input and examine alternative to develop Project Applications Plan	Make open call(s) for EAs	Make open call(s) for EAs	Enable use of beta data t EAs and receive feedbac
	Develop information to inform the FAD and PLRA	Compile contact information to support communications with users	Articulate DAAC support for applications users	Conduct events and data workshops to engage communities and build familiarity with access	Conduct events and dat workshops to engage communities and build familiarity with access
	Inform concept discussions	Initiate use cases to examine uses in design	Identify simulated data products for testing in decision systems	Conduct case studies with EAs	Revisit Community Assessment Report and reassess user communitie and opportunities
			Continue use cases to examine uses in-depth	Support efforts to test and practice with simulated data	Assess and report on the Project Applications Program (PAP) and Plan
				Prepare baseline information to support Senior Review	
	Project Studies	Project Applications Plan	Updated applications plan and Applications Traceability Matrix	Updated applications plan and Applications Traceability Matrix	Updated Community Assessment Report
	Community Assessment and Report	Applications Traceability Matrix	Applications Posters	EA telecons and case studies	EA telecons and case studies
Deliverables		Applications Workshop and report	Applications Workshop(s) and report(s)	Applications Workshop(s) and report(s)	Applications Workshop(s short courses and report
		Community Contact List	DAAC Engagement summary	Data workshops and short courses	Socioeconomic analyses and reports
		Use Cases/Case Studies	Use Cases/Case Studies	Baseline report for Senior Review	Information for Senior Review Submissions
	MAR: Conduct a Mission Applications Review prior to MCR	SRR: Systems Requirements Review	PDR: Preliminary Design Review	CDR: Critical Design Review	Commissioning
Events	MCR: Articulate applications as part of the overall mission concept			SIR: Systems Integration Review	Data Availability
				ORR: Operations Readiness Review	
				MRR: Mission Readiness Review	
	KDP-A	KDP-B	KDP-C	KDP-D/KDP-E	KDP-F

DEVELOP addresses environmental and public policy issues through interdisciplinary feasibility studies that apply the lens of NASA Earth observations to community concerns around the globe. Bridging the gap between NASA Earth Science and society, DEVELOP projects build capacity in both participants and partner organizations to better prepare them to address the challenges that face our society and future generations.



Developing an Applied Science traceability matrix that is defensible and measurable in conjunction with the Science Traceability Matrix

Characterize the problem space or the baseline Your hypothesis and objective. Science and Applications Traceability Matrix

- What are the characteristics of your application's current information product(s):
 - Variable
 - Temporal
 - Spatial
 - Units
 - Geographic domain
- How is the information currently used?
- How would you evaluate the complementarity or the utility of your proposed work versus the baseline?
- How does your proposed work improve upon that baseline?
- Define your (Applied) Science Question and Objective
- Document your observables and their requirements and make the case that they can be used to address the hypotheses/objectives

Developing an SATM

Developing an SATM

Characterize the problem space or the baseline Your hypothesis and objective. Science and Applications Traceability Matrix

- What are the characteristics of your application's current information product(s):
 - Variable
 - Temporal
 - Spatial
 - Units
 - Geographic domain
- How is the information currently used?
- How would you evaluate the complementarity or the utility of your proposed work versus the baseline?
- How does your proposed work improve upon that baseline?
- Define your (Applied) Science Question and Objective
- Document your observables and their requirements and make the case that they can be used to address the hypotheses/objectives

Example

See

table

next

page.

Heat Index (0-1) based on daily weather forecasts over County region. Spatial resolution TBC.

Information is used to for county level emergency response to heat waves and planning of resources (cooling stations, hospital surveillance for heat stressrelated conditions)

Determine utility of HVI (proposed RSbased product) versus the standard Heat Index for assessing heat wave impacts in X County.

HVI is better correlated with heat-related stress conditions reported at hospitals.

on	Science / Applied Science Durotice	Science / Applied Science Objectivetjó	Rettern	Fartner Geta Raveline	Physical Roranderis	Obervables	Acquirements	Artistoated / Desired Casebilite	Moden Functional Resolvements	05 Reference
		Ab L Department stress with highest cases of beat stress./ orban heat scland for X000 dates.	Rublic Health County Websy and Rower Utilities	Exampler tectors in AC Hearcord day andre day propulsi datasets. 7	Optimuly, LST with uncertainty IPZ, with spatial ABC resolution and DEF resolution and DEF resolution for CPH years.	Dysimally, LSF with uncertainty MIZ, with spatial ABC measured and DEF temporal measured on for DTI years.	pixel stat, rasch wätty, wesetength sange, dytamic tempe, NEDF at sensor		Need to heat coverage of LA County Regise – LAC Regise is in the XYZ orbit.	w2, w3
	What area within an order make impacted or valentable to heat streac?	AS-8 Determine differences in best stress as determined by M vs.Hitl	Aubic Health Gauny Water and Power Utilities		Spatial Resolution, Temporal Resolution, Seatial Growinge, Uncertainty	Saettal Readuction, Tamporal Readuction, Saettal Gaverage, Uncontaining			Meat wave influits determined delay by X weather instrument will fill spatial gaze on days data are available.	
		AS-E. Detornism where heat bland and vulnerability citization citization data over 15 years to inform planning wettion to whighto impacts affects these heat stress	Oly or County Ranning			Urben vegetation (?)				

DS Designated Observables (DOs) *Surface Biology and Geology (SBG)* Science – Applications Traceability Matrix Example

Science / Applied Science Question	Science / Applied Science Objective(s)	Partners	Partner Data Baseline	Physical Parameters	Observables	Requirements	Anticipated / Desired Capability	Mission Functional Requirements	DS Reference
What area within an urban region are most impacted or vulnerable to heat stress?	AS-I. Determine areas with highest rates of intensity of heat stress / urban heat island for XXXX dates.	Public Health County Water and Power Utilities	X weather stations in ABC County. Historical daily weather station data, minimal geospatial datasets. ?	Optimally, LST with uncertainty XYZ, with spatial ABC resolution and DEF temporal resolution for GHI years.	Optimally, LST with uncertainty XYZ, with spatial ABC resolution and DEF temporal resolution for GHI years.	pixel size, swath width, wavelength range, dynamic range, NEDT at sensor		Need to have coverage of LA County Region. LAC Region is in the XYZ orbit.	W-2, W-3
	AS-II Determine differences in heat stress as determined by HI vs HVI	Public Health County Water and Power Utilities		Spatial Resolution, Temporal Resolution, Spatial Coverage, Uncertainty	Spatial Resolution, Temporal Resolution, Spatial Coverage, Uncertainty			Heat wave info is determined daily by X weather stations. XYZ instrument will fill spatial gaps on days data are available.	
	AS-III. Determine urban heat island and vulnerability climatology data over 15 years to inform long term planning metrics to mitigate impacts of heat stress	City or County Planning			Urban vegetation (?)				

Submit Request for ECOSTRESS Data Acquisition

https://ecostress.jpl.nasa.gov/applications/app_request

ECOSTRESS standard products will include evapotranspiration (PT-JPL and ALEXI) as well as evaporative stress index and water use efficiency. These products can be used to assess vegetation water stress over managed (such as agricultural) and natural landscapes and have the potential to support management decisions. The ECOSTRESS Applications Area is seeking core partners and activities to pursue to demonstrate applications of ECOSTRESS or ECOSTRESS-like products in applied contexts. Christine Lee - christine.m.lee@jpl.nasa.gov

HyspIRI https://hyspiri.jpl.nasa.gov

The Decadal Survey's Designated Observables (DOs) Surface Biology and Geology (SBG)

Decadal Survey Questions

https://science.nasa.gov/earth-science/decadal-surveys/decadal-survey-questions

Decadal Survey Community Forums

https://science.nasa.gov/earth-science/decadal-survey-community-forum