An Early Warning System for Vector-Borne Disease Risk in the Amazon

NASA Project NNX15AP74G
William Pan, Duke University

Health and Air Quality Applications Programs Review
September 18-19, 2018
Burlington, VT
Project Team

Duke University
- **William Pan, DrPH**
 - PI
- **Mark Janko, PhD**
 - Post-doc
- **Gabriela Salmon-Mulanovich, PhD**
 - Peru Coordinator
- **Axel Berky, MEM**
 - RA
- **Justin Lana, PhD Candidate**
 - RA

SUNY-Albany
- **Beth Feingold, PhD**
 - Co-I
- **Anna Armstrong, MS Candidate**
 - RA

Ecuador Collaborators Universidad San Francisco de Quito
- **Carlos Mena, PhD**
 - Co-I

Johns Hopkins University
- **Ben Zaitchik, PhD**
 - Co-I
- **Cristina Recalde, PhD Candidate**
 - RA
- **Francesco Pizzitutti, PhD**
 - Post-doc

Peruvian Collaborators
- **Graciela Meza**
 - Malaria Cero, MINSA
- **Andres Lescano**
 - UPCH
- **Ana Maria Morales**
 - MINSA
- **Carlos Alvarez, MS**
 - DIRESA-Loreto
- **Yuri Escajadillo, PhD**
 - SENAMHI
- **Luis Alfaro, PhD**
 - SENAMHI
Project Summary
NNH13ZDA001N-Health

<table>
<thead>
<tr>
<th>OBJECTIVE:</th>
<th>Develop an early warning system for malaria in the Peruvian Amazon and evaluate the expansion of the system to other diseases and Amazon regions.</th>
</tr>
</thead>
</table>
| **GEOGRAPHIC SCOPE:** | Primary: Peru (Loreto), Ecuador (Napo, Orellana, Succumbios)
Secondary locations: Colombia, Western Brazil (Acre) |
| **SOCIETAL BENEFIT:** | Improved / targeted interventions; Application of components to other diseases and climate events |
| **EARTH OBSERVATIONS / MODELS / TECHNOLOGIES APPLIED:** | Land Data Assimilation System (LDAS) – MODIS, LandsAT, GRACE, TRMM, GPM, SMAP, GOES |
Motivation: Malaria resurgence in the Americas

- # Cases (1000s)
 - P. vivax
 - P. falciparum

- Cases in Colombia (1000s)
- Cases in Loreto (1000s)

- Loreto-Total
- Colombia-Total

- P. falciparum incidence
 - Cases/1000 people/week: 2010-01-17

- Map showing incidence and distribution of malaria cases in the Americas.
Overview of our Approach

Earth Observations

Land Data Assimilation System
- Temperature
- Precipitation
- Soil Moisture
- Solar Radiation
- Land Cover
- Stream Flow

Human Population Model
- 1km population
- Seasonal Migration

Regional Statistical Model
- Monitor & Identify eco-regions with elevated malaria

Agent Based Model
- Sub-region estimates of household risk

Government Malaria Surveillance

Enumeration:
Health Posts, 2007 Census
Summary of Milestones (Year 3)

Administrative

- **Project Administration:**
 - Monthly conference calls
 - Stakeholder meeting, October 2018 in Quito, Ecuador and Lima, Peru. The main objective is long-term sustainability and technology transfer
 - Data acquisition: updated malaria surveillance data in Peru to February 2018; malaria incidence data in Ecuador related to 2016 outbreak
 - Spin-off grant applications to NOAA, RFF and NASA (not funded), FAO (pending), Ecuador Government (pending)

- **Personnel:**
 - No major changes
Summary of Milestones (Year 3)

Scientific

- **Progress by Component:**
 - LDAS
 - Performed evaluation of estimated evapotranspiration over the Peruvian & Ecuadorian Amazon
 - Evaluate the impact of Madden-Julian Oscillation (MJO) on rainfall seasonal to sub-seasonal (S2S) climate variability
 - Conducted a preliminary objective climate regionalization analysis using S2S precipitation hindcast
 - Human Population Model
 - Completed assessment of human population model (5KM scale)
 - Statistical Model
 - Completed Socio-environmental regional forecast model and performed forecast error estimates
 - Finalizing Bayesian distributed lag model for district-level forecasting model
 - ABM
 - Published study on local-scale migration effects on malaria transmission
 - Submission of study evaluating long-term migration and asymptomatic malaria effects on malaria incidence
Summary of Milestones (Year 3)

Scientific

- **Extensions of EWS**
 - Cutaneous Leishmaniosis
 - Completed field study of CL transmission factors, began evaluation of LDAS product in informing transmission
 - Mercury exposure
 - Used LDAS to understand Hg cycling in the environment. Pursuing external funding for extended research

- **Dissemination:**
 - Pan, WK. “An Early Warning System for Malaria in the Amazon” Institute for Disease Modeling Symposium, Session: Malaria in Low-Transmission Settings, Bellevue, WA, April 16-18, 2018
 - Pizzitutti, F., BF Feingold, B Zaitchik, G. Salmon-Mulanovich, CF Mena and WK Pan, “Modeling asymptomatic infections and word-related human circulation as drivers of unstable malaria intransmission in low prevalence zones” in review *Acta Tropica*
Challenges & ARL

• Shift Francesco from Duke to JHU
• New President and Ministers of Health (Ecuador & Peru)
• Malaria epidemic (Ecuador, Peru, Colombia)
• Limited intervention data
• Modeling seasonal migration cannot be validated

Starting ARL = 4 (8/2015)
 – System components have been published and have been shown to work together

ARL by component (9/2018)
 – LDAS = 7
 – Human Pop = 7
 – Statistical Model = 7
 – ABM = 7

Goal ARL = 8
Malaria Early Warning System
Component Updates

LDAS
Population
Statistical & ABM
Overview of our Approach

Earth Observations

Land Data Assimilation System
- Temperature
- Precipitation
- Soil Moisture
- Solar Radiation
- Land Cover
- Stream Flow

Human Population Model
- 1km population
- Seasonal Migration

Regional Statistical Model
- Monitor & Identify eco-regions with elevated malaria

Agent Based Model
- Sub-region estimates of household risk

Government Malaria Surveillance
LDAS provides environmental descriptors on a daily, 1km scale

UPDATES

- Compared the estimated evapotranspiration by LDAS to satellite observed evapotranspiration across the Peruvian and Ecuadorian Amazon (from ALEXI), from 2003 to 2015
- Performed a diagnostic analysis of the relationships between the activity and phases of the MJO by using the operational Real-Time Multivariate MJO index (RMM) and a regional index (EOF1)
- Evaluated the skill of selected National Multi-Model Ensemble (NMME) global forecast systems in Northwest South America (NWSA) through an approach designed to address spatial bias
LDAS provides environmental descriptors on a daily, 1km scale

UPDATES
- Compared the estimated evapotranspiration by LDAS to satellite observed evapotranspiration across the Peruvian and Ecuadorian Amazon (from ALEXI), from 2003 to 2015.
- Performed a diagnostic analysis of the relationships between the activity and phases of the MJO by using the operational Real-Time Multivariate MJO index (RMM) and a regional index (EOF1).
- Evaluated the skill of selected National Multi-Model Ensemble (NMME) global forecast systems in Northwest South America (NWSA) through an approach designed to address spatial bias.
Human Population Model

Provide accurate estimates of population at risk

UPDATE

Modeling health post catchment population with:

- **Land cover**
 - Percent forest within 5km radius
 - Area classified as water within Theissen polygons

- **Location**
 - Distance to main roadways and rivers
 - Distance to superior education

- **Health post characteristics**
 - Health post category 1-3 (health post vs. hospital)

- **District Characteristics**
 - Number of health posts in the district
 - Number of communities
 - Area

Estimated Population for Loreto: 926,459
Population of Loreto (2007 Census): 880,600
Absolute value of error in population of districts: 206,378
Regional Statistical Model

Approach #1

- Identify unique ecoregions that share similar mean and variance structures by type of land cover, climate parameter(s), and ecological char.
- Fit an Unobserved Components Model to each ecoregion:
 \[
 y_t = \mu_t + \gamma_t + \psi_t + r_t + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{j=1}^{m} \beta_j x_{jt} + \epsilon_t
 \]
 - Trend (μ_t), cycle (ψ_t), seasonal (γ_t) and autoregressive (r_t) components, including momentum ($\sum_{i=1}^{p} \phi_i y_{t-i}$) and explanatory factors ($\sum_{j=1}^{m} \beta_j x_{jt}$).
- Perform 12-week forecasts
Approach #1

- Unobserved Components Model to each ecoregion:

\[y_t = \mu_t + \gamma_t + \psi_t + r_t + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{j=1}^{m} \beta_j x_{jt} + \epsilon_t \]

- Perform 12-week forecasts
- Left – Model fit
- Right – 12 week forecast
- If observed data exceed 95% CI, outbreak is suspected
Regional Statistical Model

Approach #2

- Create forecasts by district (original proposal). Evaluate effects of Global Fund interventions (bednet distribution, strengthening malaria diagnostics, environmental management, health worker training)
- **Bayesian Distributed Lag Model**

\[y_t = x_t^T \beta + \gamma_t \]

- \(y_t \) is incidence (cases/1000/week) at time \(t \)
- \(x_t^T \) is vector of environmental covariates at times \(t, \ldots, t - 36 \) (i.e. environmental conditions over the previous 9m)
- \(\beta \) is a vector of (distributed lag) regression coefficients linking the environmental covariates to the response
 - \(\beta_k | \sigma^2(\beta_k), \phi_k \sim GP \left(0, \sigma^2(\beta_k) \Sigma(\phi_k) \right) \)
 - Regression coefficients for each of the \(k \) environmental predictor vectors are assigned a Gaussian Process prior with an exponential covariance structure
- \(\gamma_t \) is a random effect capturing seasonal variation above and beyond the variability captured in \(x_t^T \beta \)
 - \(\gamma | \sigma^2(\gamma), \phi_{(\gamma)} \sim GP \left(0, \sigma^2(\gamma) \Omega(\phi_{(\gamma)}) \right) \)
 - Random effects \(\gamma \) assigned a Gaussian process prior with periodic covariance structure (i.e. residual variability exhibits yearly seasonal patterns
Malaria incidence for each district,
(green=vivax; red=falciparum)
Blue Band = Global Fund Intervention Period
Malaria incidence for each district, (green=vivax; red=falciparum)

Blue Band = Global Fund Intervention Period

Model result from one district – Significant decline in malaria during GF intervention, followed by increase with GF withdrawal
Agent Based Model

- ABM model was used to test whether infection reservoir represented by asymptomatic carriers combined with circular human (occupational) movement can capture observed hypoendemic malaria transmission
- Results show that ABM reproduces passive case detection surveillance
Agent Based Model

- ABM model was used to test whether infection reservoir represented by asymptomatic carriers combined with circular human (occupational) movement can capture observed hypoendemic malaria transmission

- Results show that ABM reproduces passive case detection surveillance
 - Scenario analysis show that, even if asymptomatic infections are completely eliminated, human movements generate a flow of imported cases that is enough to permit the persistence of transmission
 - Simulation results were verified over a wide range of clinical immunity prevalence values and over a wide range of percentages of people working in remote hyperendemic areas.
NCE Year MAJOR CHALLENGE

- **Sustainability and Technology Transfer**
 - Original goal of our project was to transfer technology to the US Naval Medical Research Unit (NAMRU6)
 - NAMRU6 was replaced by Ministry of Health
 - Political changes in Peru: 2 presidents, 5 Ministers of health in 3.5 years
 - Potential for Government Institutions and local Universities to maintain the system
Sustainability Plan

- Stakeholder meeting in Quito, Ecuador and Lima, Peru
 October 2018
- Follow-up assessment
 November 2018

Strong Interest
- Technical training & implementation plan with stakeholders: Dec 2018
- Technical Training: Mar 2018
- Procotol & Software transfer: Apr 2018
- Final Training: June 2018

Moderate Interest
- Technical training & implementation plan with stakeholders: Dec 2018
- Workplan to complete publications: January 2019
- Manuscript submissions: May 2019

Low/No Interest
- Workplan to complete publications: December 2018
- Manuscript submissions: April 2019