Species Distribution Modeling with Remote Sensing

Amber McCullum, Juan Torres-Perez, Zach Bengtsson
Guest Speakers: Erica E. Johnson, Andrea Paz Velez, Mary E. Blair

Aug 17, 2021
Course Structure and Materials

- Three 1.5-hour sessions on August 12, 17, & 19
- Sessions will be presented once in English 12:00-13:30 EDT
- Webinar recordings, PowerPoint presentations, and the homework assignment can be found after each session at:
- Q&A following each lecture and/or by email at:
 - amberjean.mccullum@nasa.gov
 - juan.l.torresperez@nasa.gov
 - bengtsson@baeri.org

Juan Torres-Pérez Zach Bengtsson

Amber McCullum
Webinar Agenda

Part 1: Overview of Species Distribution Models (SDMs)

Part 2: Using Wallace to Model Species Niches and Distributions

Part 3: Additional SDM Tools and Techniques, ASP Projects, and Summary
Using *Wallace* to Model Species Niches & Distributions
Session 2 Overview

1. Species Distribution Models in **Wallace**

2. **Wallace** Walkthrough: Running a Full SDM Workflow

3. Redesign & Expansion: Making it Easier to Visualize Results and Add New Modules

4. Extensions: SDM Post-Processing for Conservation Decision-Making and Beyond
Species Distribution Models in **Wallace**
From Ecological Niches to Geographic Distributions

Set of Environmental Variables Suitable for Species Survival

Geographic Areas Where These Environments Exist

Jiménez & Soberón (2021)
Species Distribution Modeling Overview

Elith & Graham 2009, Phillips et al. 2017; Guisan et al. 2017
Needed in Species Distribution Modeling

Software that achieves a balance between automation and supervision by:

- **Automating** repetitive tasks
- **Forcing** the user to make critical biological and conceptual decisions
- **Being general** with respect to the algorithm(s) used
Needed in Species Distribution Modeling

Software that achieves a balance between automation and supervision by:

- **Automating** repetitive tasks
- **Forcing** the user to make critical biological and conceptual decisions
- **Being general** with respect to the algorithm(s) used

WALLACE: A flexible platform for reproducible modeling of species niches and distributions built for community expansion

Received: 9 October 2017 | Accepted: 16 November 2017

DOI: 10.1111/2041-210X.12945

Jamie M. Kass\(^{1,2}\) | Bruno Vilela\(^{3}\) | Matthew E. Aiello-Lammens\(^{4}\) | Robert Muscarella\(^{5}\) | Cory Merow\(^{6}\) | Robert P. Anderson\(^{1,2,7}\)

Anderson 2012; Kass et al. 2017
Wallace: An Ecological Modeling Application

A user-friendly application for species distribution modeling that provides guidance towards following best-practices at each step.

Wallace is:

• Accessible
• Instructive
• Flexible
• Interactive
• Reproducible
• Expandable
• Open
Wallace is:

Accessible

- Lowers barriers to implement cutting-edge SDM techniques
- Allows users to download occurrence & environmental data from diverse sources
- Users can find support from the community through our various networks
 - Google Groups
 - GitHub
Wallace is:

Instructive

- Provides educational & instructional resources addressing:
 - Concepts/Theories
 - Methods

- Guides users in following best-practices
Wallace is:

Flexible

- Allows users to select from multiple:
 - Data Sources
 - Analytical Tools
- Designed to fit the user’s needs
Wallace is:

Interactive

- Provides an assortment of dynamic visualizations to explore data and results
 - Maps
 - Tables
 - Graphs
Wallace is:

Reproducible

- Allows users to:
 - Download executable code
 - Replicate analyses
 - Save work and load later (no need to redo steps)
Wallace is:

Expandable

- Users can contribute new functions & analytical tools to be integrated as:
 - Components (A)
 - Modules (D)
Wallace is:

Open

- Code is publicly available for users to:
 - Download (CRAN, GitHub)
 - Modify & suggest enhancements

- Enables users to become contributors
Wallace Walkthrough: Running a Full SDM Workflow
Install and Run **Wallace**

1. Install R (version ≥ v.3.5.0) and RStudio
2. Install the **Wallace** package from CRAN (v.1.1; stable)
3. Run **Wallace** in RStudio

```r
# install the package
install.packages('wallace')

# load the package
library(wallace)

# run the app
run.wallace()
```
Redesign & Expansion: Making it Easier to Visualize Results and Add New Modules
Wallace V2 Coming Soon

- **New modules** added with help from collaborators around the world
 - More data sources
 - More analytical features

- Re-designed to make **module additions easier**

- Now based on RMMS **metadata** (Merow et al. 2019)

- Development guided by **user feedback**:
 - Conference workshops, emails, Google group
Extensions: SDM Post-Processing for Conservation Decision-Making and Beyond
Wallace V3 Partnership for Conservation

Wallace

BioModelos

BON in a Box

Galante et al. in prep.
New Components Added to **Wallace** *(V3)*

[Diagram of workflow process]

- **A.** Obtain Occurrence Data
- **B.** Upload / Download
- **C.** `spocc`
- **D.** Query Database

User SDM and **Mask** highlighted.
New Components Added to Wallace (v3)
Mask SDM (Based on maskRangeR)

- Post-processes SDMs to estimate current ranges:
 - RS Products
 - E.g., Forest Cover, Urbanization, Cultivars
 - User-Defined Polygons
 - E.g., Protected Areas, Land Cover
 - Expert-Defined Maps/Ranges
Mask Example: Olinguito \((Bassaricyon neblina)\)

- Recently described small carnivore
- Limited to high-altitude cloud forests
- Data-poor
- Needs IUCN status update given recent deforestation

Merow et al. In rev.

commons.wikimedia.org
Mask Example: Olinguito (Bassaricyon neblina)

SDM

Recent Occurrences

MODIS Yearly Forest Cover

Gavrutenko et al. 2021, Merow et al. in rev.
Calculate Indicators (Based on `changeRangeR`)

- Calculate key biodiversity change indicators
 - IUCN AOO & EOO
 - Percentage of Suitable Land Cover
 - Protected Area Representativeness

Galante et al. in prep.
Calculate Indicators Example: Olinguito *(Bassaricyon neblina)*

- Changes in Range, AOO, EOO given GIS data:
 - Changes over time/space
 - E.g., deforestation over time

Galante et al. *in prep.*
Calculate Indicators Example: Colombian Primates

Richness

- Multispecies Diversity Metrics:
 - Species Richness
 - Species Endemism

- Soon in *Wallace*:
 - Phylogenetic Diversity
 - Phylogenetic Endemism
 - Complementarity

Galante et al. *in prep.*
Summary

- **Wallace** is a **user-friendly** application for species distribution modeling that provides **guidance** towards following **best-practices** at each step.
 - Accessible, Instructive, Flexible, Interactive, Reproducible, Expandable, Open
- **Wallace V2** (coming soon)
 - Provides additional SDM data sources & analytical tools.
 - Facilitates module contributions (from user community)
- **Wallace V3** (in development)
 - Added tools for conservation applications
 - Estimate species ranges
 - Calculate biodiversity indicators.
- Next Session: Additional SDM Tools and Techniques
Contacts

- Trainers:
 - Juan Torres-Pérez: juan.l.torresperez@nasa.gov
 - Amber McCullum: amberjean.mccullum@nasa.gov
 - Zach Bengtsson: bengtsson@baeri.org

- Training Webpage:
 - ARSET Website:
 - https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset
Thank You!

wallaceecomod.github.io

groups.google.com/g/wallaceecomod
Supplemental: Wallace Walkthrough Slides
Component 1: Obtain Presence Data (Occ Data)

- User-specified
- Download from online databases
 - GIBF
 - VertNet
 - USGS BISON
Component 2: Process Presence Data (Process Occ)

spThin removes localities that are less than a specified “X” distance.

A More Uniform Representation
Component 3: Obtain Environmental Data (Env Data)

- User-specified
- Download from online databases
 - WorldClim
Component 4: Process Environmental Data (Process Envs)

- Select Study Region
 - User-Specified
 - Bounding Box
 - Minimum Convex Polygon
 - Point-Buffers

- Sample Background Points
Component 5: Partition Occurrence Data (Partition Occs)

- Non-Spatial (Random)

- Spatial

Muscarella et al. 2014

Muscarella et al. 2014
Component 6: Model Building & Evaluation (Model)

- Modeling Algorithms:
 - Bioclim
 - Maxent
 - maxent.jar
 - Maxnet

- Model Tuning:
 - Test parameter combinations
 - Find best-performing model
 - Reduce complexity
Component 6: Model Building Background

Feature Classes

- L
- Q
- H
- P
- T

- Linear
- Quadratic ($N_{min}=10$)
- Product ($N_{min}=80$)

- Threshold ($N_{min}=80$)
- Categorical
- Hinge ($N_{min}=15$)
Component 6: Model Building Background

Regularization Multiplier

0.5
1
1.5
2
2.5

RMSEs penalize higher complexity.

Overfit Model (blue)

Underfit Model (yellow)

Generalized Model (green) Desired

[Diagram showing model complexities with regularization multipliers 0.5, 1, 1.5, 2, 2.5]
Component 6: Model Tuning

Environmental Response

Feature Classes

Penalty to Model Complexity

Regularization Multiplier

Recommendations:

- >80 occurrence records: All Feature Classes
- 15 – 79 occurrence records: L, Q, H
- 10 – 14 occurrence records: L and Q
- < 10 occurrence records: L only
Component 6: Model Evaluation

- Modeling Evaluation Metrics
 - AUC
 - Omission Rate
 - AICc
 - N Parameters

- Applicable To:
 - Entire Model
 - Each Partition
Component 6: Model Evaluation

<table>
<thead>
<tr>
<th>AUC</th>
<th>orMTP/10pct</th>
<th>AICc</th>
<th>Nparam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures a model’s ability to distinguish true & false presences</td>
<td>Measures the % of true presence points predicted as absences</td>
<td>Measures the relative quality of a model by balancing fit & complexity</td>
<td>More parameters increase model complexity</td>
</tr>
</tbody>
</table>

Generally, we want models with:
- High AUC
- Low Omission Rate
- Low AICc
- Fewer Parameters
Component 7: Visualizing Results (Visualize)

- Visualize results as:
 - Model Evaluation Plots
 - Response Curves
 - Prediction Maps
 - Continuous
 - Binary
Component 8: Spatial & Temporal Projections (Project)

- Allows us to project models to:
 - New Geographic Extents
 - Different Time Periods
 - Future
 - Past
Component 9: Download the R Code (Session Code)

- Download the R code.
- Replicate analyses in R.
Thank You!