Project Summary

OBJECTIVE

Develop an early warning system for malaria in the Peruvian Amazon and evaluate the expansion of the system to other diseases and Amazon regions.

TEAM

William Pan, Duke; Mark Janko, University of WA; Ben Zaitchik, Johns Hopkins; Carlos Mena, Francesco Pizzitutti, Universidad San Francisco de Quito, Ecuador; Andres Lescano, Gabriela Salmon-Mulanovich, Universidad Peruana Cayetano-Heredia; Beth Feingold, SUNY-Albany; Cesar Munayco, CDC-Peru, Ministry of Health
Summary of Accomplishments

• We forecast malaria outbreaks in small, administrative districts 12 weeks in advance with ~90% sensitivity

• IMPLEMENTATION:
 - LDAS implementation in Ecuador in the Institute of Geography at USFQ in partnership with the Ministry of Public Health
 - Forecasting capacities to be adopted by CDC-Peru and CLIMA (Climate and Infectious Disease Laboratory at UPCH, Lima)
 - Partnership with the InterAmerican Institute for Global Change Research

• Additional Funding:
 - Finalist for EU “Early Warning for Epidemics” prize ($5 million euros)
 - Newly funded R01 from NIAID ($2.5 million) for expansion & cross-border malaria

• Publications: >10 (2 more in review/resubmit)
• Fully costed or encumbered
Summary of Methods
• How do we achieve 90% sensitivity in detecting malaria outbreaks?
 - LDAS
 - Ecoregion analysis & District level forecast models

Project Plans after NASA (R01, EC Prize)
LAND DATA ASSIMILATION SYSTEM

Temperature
Precipitation
Soil Moisture
Solar Radiation
Stream Flow

LANDSCAPE ECOLOGY

Districts (n=51)
Bodies of Water
Humid Amazon Forest
Humid Andean Forest
Forest Flooded by Clear-water Rivers
Forest Flooded by Black-water Rivers
Anthropic Areas
Amazonian azonal vegetation (edaphically conditioned)
Upper Amazon alluvial plains marsh

Government Malaria Surveillance, Interventions & Population at Risk

ECO-REGION FORECAST MODEL
12-week forecast in Ecoregions

DISTRICT FORECAST MODEL
12-week forecast in Districts

AGENT-BASED MODELS
Intervention & Control Scenarios
EcoRegion Forecast

- LDAS & Ecosystem data are combined to identify EcoRegions
- Malaria & Population data are aggregated to the EcoRegion level
- Unobserved Component Model (UCM) used to conduct forecasts

\[y_t = \mu_t + \gamma_t + \varphi_t + \eta_t + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{j=1}^{m} \beta_j x_{jt} + \epsilon_t \]

\[y_t \sim \text{malaria cases}/1000 \text{ during week } t \]

\(\mu_t, \gamma_t, \varphi_t, \) and \(\eta_t \) represent the trend, seasonal, cyclical and autoregressive components

\(\phi_i \) is an autoregressive term capturing the momentum of infections

\(\beta_j \) is the unknown effect for explanatory factors

\(\epsilon_t \) is the error term

- MINSA-defined outbreak level
EcoRegion Forecast

Real-time data reporting (top) and forecast (bottom) for EcoRegion 1 from May-July 2018 in Loreto, Peru

Forecast Performance, 2016

<table>
<thead>
<tr>
<th>Forecast weeks</th>
<th>TP</th>
<th>FN</th>
<th>FP</th>
<th>TN</th>
<th>Se</th>
<th>Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Region 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>5-8</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>100%</td>
<td>90%</td>
</tr>
<tr>
<td>9-12</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>100%</td>
<td>70%</td>
</tr>
<tr>
<td>Eco-Region 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>50%</td>
<td>91%</td>
</tr>
<tr>
<td>5-8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>50%</td>
<td>91%</td>
</tr>
<tr>
<td>9-12</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>100%</td>
<td>73%</td>
</tr>
</tbody>
</table>

TP= True Pos; FN= False Neg; FP=False Pos.; TN=True Neg.
District Level Forecast

Root-mean square prediction error, Fernando Lores and Ramon Castilla districts, 2016-19

<table>
<thead>
<tr>
<th>District</th>
<th>Se</th>
<th>Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoregion 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iquitos</td>
<td>88%</td>
<td>84%</td>
</tr>
<tr>
<td>Fernando Lores</td>
<td>51%</td>
<td>84%</td>
</tr>
<tr>
<td>Punchana</td>
<td>89%</td>
<td>74%</td>
</tr>
<tr>
<td>Belen</td>
<td>79%</td>
<td>70%</td>
</tr>
<tr>
<td>San Juan Bautista</td>
<td>97%</td>
<td>67%</td>
</tr>
<tr>
<td>Jenaro Herrera</td>
<td>94%</td>
<td>98%</td>
</tr>
<tr>
<td>Ecoregion 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramon Castilla</td>
<td>57%</td>
<td>79%</td>
</tr>
<tr>
<td>Pebas</td>
<td>54%</td>
<td>68%</td>
</tr>
<tr>
<td>Yavari</td>
<td>55%</td>
<td>63%</td>
</tr>
<tr>
<td>San Pablo</td>
<td>60%</td>
<td>76%</td>
</tr>
</tbody>
</table>

Sensitivity & Specificity of 8-week district forecasts, 2007-2019

Hierarchical Bayesian spatio-temporal logistic model

\[y(s,t) = x^T(s,t)\beta + \theta(s,t) \]

\(y(s,t) \sim \# \) malaria cases in district \(s \) during week \(t \)

\(x(s,t) \sim \) vector of covariates & lagged predictors

\(\theta(s,t) \sim \) spatio-temporally correlated random effects
Life After NASA—R01 Malaria EWS

• NIAID R01: Improving Response to Malaria Outbreaks in Amazon-Basin Countries
 - 5 years (Sept 1, 2021-Aug 31, 2026), $2.5 million direct costs

Aim 1. To evaluate (i) MEWS expansion to the Brazilian and Ecuadorian Amazon and (ii) downscaling of forecasts to sub-district levels

Aim 2. To evaluate the relationship between infrastructure, socio-economic networks and migration across international border (Brazil-Peru, Ecuador-Peru) with malaria incidence rates

Aim 3. Evaluate scenarios of potential malaria interventions along borders to jointly reduce malaria rates
A Consortium to Effectively Respond to Climate-Attributable Risks-Malaria Elimination (ACERCAR-ME)

- Creation of CoP & build Governance Structure around climate-health through STeP Fellow Program led by IAI
- Technology Implementation through partnerships (USFQ and UPCH as model)
- Seeking support from IADB, World Bank, Gates Foundation (& NASA?)

Implementation Timeline:
- Years 1-4: Ecuador, Peru, Brazil, Fr. Guiana
- Years 5-7: Colombia, Suriname
- Years 8-10: Bolivia, Guyana
- Years 11+: Mesoamerica
THANK YOU!