

EARTH SCIENCE APPLICATIONS WEEK 2022

Day 1: Environmental Justice & Urban Development

August 9, 2022

EARTH SCIENCE APPLICATIONS WEEK 2022 **MARKEN DEVELOPMENT**

Event Attendance Guidelines

- 1. Please stay muted with cameras off
- 2. Post questions for speakers in the chat & they will be answered there

EARTH SCIENCE APPLICATIONS WEEK 2022

Equity and Environmental Justice

Nancy D. Searby, PhD

What is Environmental Justice?

Environmental Justice (EJ) is "the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation and enforcement of **environmental laws**, regulations and policies."

Map of Washington, D.C., showing areas that have higher rates of PM2.5attributable mortality.

Elevated rates of PM2.5-attributed mortality correlate with areas that have a higher proportion of Black residents.

Credit: NASA Earth Observatory.

What can NASA do?

Satellite data can help us uncover environmental injustices

Monitor restoration of electricity in rural Puerto Rico following Hurricane Maria, which found that rural areas were disproportionately impacted by prolonged power outages. Pair sea surface height with demographic data for Norfolk, Virginia to understand disparities seen by communities of color and lower economic status in negative impacts of **sea level rise**.

Create an application that provides the Navajo Nation with info about water resources to Support increased water accessibility.

Identify drivers of **extreme urban heat** and generate of a vulnerability index for urban planning in San Diego, California.

Capacity Building for Community Action

Equity and Environmental Justice

Builds connections with communities to advance equity and environmental justice

- ✓ Emphasis on co-development and equitable engagement
- ✓ Combines Earth and social sciences

Want to learn more?

Check out these resources!

Environmental Justice

Data Backgrounder

Earth Observing Dashboard

UNBOUND - EJ Understanding Needs to Broaden Outside Use of NASA Data - for Environmental Justice Workshop #1 - April 29, 2022

EARTH SCIENCE APPLICATIONS FOR SUSTAINABLE DEVELOPMENT GOALS

Argyro Kavvada, Ph.D.

August 9, 2022 @EO4SDG 💓

TOWARDS INTEGRATED MONITORING FRAMEWORKS

https://sdgs.un.org/goals

https://unstats.un.org/sdgs/indicators/indicators-list/

Earth Observations Informing Human Settlements Monitoring and Resilience Planning

Cities and communities around the world face numerous environmental hazards— e.g., extreme heat events, landslides, pollution, flooding— that they must monitor and address to enhance resilience of their residents to pressing challenges including climate change impacts. Earth observations provide significant cost and time saving in policy areas that are important to delivering successful and sustainable cities.

https://eotoolkit.unhabitat.org

<u>Example data set:</u> POPGRID-Compare allows users to produce range estimates of population exposure to hazards.

Land use and urban planning • Access to Transportation • Adequate Housing• Open Public Spaces • Disaster Risk Management • Air Quality • Sustainable resource management • Intern. frameworks for development and sustainability

Urban Heat Exposure (Daily), 1983-2016

Earth observations toolkit for sustainable cities and human settlements

Urban Toolkit - Strengthening Capacity

4 Working Groups

Country & City-Level Use Cases

<page-header><complex-block>

https://eotoolkit.unhabitat.org

- Builds on SDG 11 but addresses a wider range of urbanization and human settlements issues.
- Places emphasis on the need to develop capacity of local authorities and other local actors for NUA and SDG implementation at the urban local level.
- Promotes FAIR-ness, contextualization and reusability of EO resources and links to the GEO Knowledge Hub.
- Shares guidance on EO data and tools (national, subnational and city experiences)
- Aims to become a global reference point and "go to" place for city to city and country to country learning.
- Hands-on Trainings
 Webinars

e. e.

. 🌬

- Listening Sessions
- Earth Scientists<>Local Government Pairings

Orlando Voluntary Local Review (VLR)

Covers 9 of the 17 goals

Partnered with ICLEI to produce first VLR at

Official report submitted to the United Nation

Aligns with the Green Works and Equity priorities of City of Orlands

Develops list of KPTs and metrics to track progress towards the local + global goals

Spotlights partners working to advance the SDQs in and around Orlando

Visit Mtg://Orlando.gov/VLR

Individual links to download SDG 11 indicator onepagers can be found here.

eotoolkit.unhabitat.org

The Earth Observations Toolkit × + ◎ ① ☆ C eotoolkit.unhabitat.org 🔲 🚯 i \equiv Sign In Q About | Contact Us Earth Observations Toolkit for SUSTAINABLE CITIES DATA TOOLS USE CASES LEARN GET INVOLVED AND HUMAN SETTLEMENTS The Earth Observations Toolkit for Sustainable Cities and Human Settlements Enables the use of Earth observations to advance Sustainable Development Goal 11 and the New Urban Agenda

NEW BOOK PUBLICATION

- ✓ Examples of internationally coordinated initiatives driving progress on UN Sustainability Agreements.
- ✓ Applications from diverse disciplines: wetland preservation, food security, water quality, marine conservation, disasters, urbanization, drought, land degradation, greenhouse gas monitoring.
- Case studies of projects engaging with a broad range of user communities, fostering their skills and capacity & co-designing practical applications to benefit the economy, society and the environment.
- ✓ Over 30 international contributors

https://www.wiley.com/en-us/Earth+Observation+Applications+and+Global+Policy+Frameworks-p-9781119536765

TABLE OF CONTENTS

1. Earth Observation Applications and Global Policy Frameworks: An Introductory Chapter.

Part I. Case Studies of Earth Observation Applications for Global Policy Frameworks

2. Observations to Underpin Policy: Examples of Ocean and Coastal Observations in Support of the Sendai Framework, the Paris Agreement, and Sustainable Development Goal 14.

3. A Bird's View of Monitoring and Management of Marine and Coastal Protected Areas.

4. Earth Observation in Support of SDG 6.3.2/6.6.1: Reporting Surface Water Quality.

5. The Fate of Wetlands: Can the View From Space Help Us to Stop and Reverse Their Global Decline?

6. Land Under Stress: Earth Observation-Based Drought Risk Monitoring for Sustainable Development.

7. Building Risk-Informed Communities: Case Studies on the Applications of Earth Observation Data.

8. Satellite Analysis Ready Data for the Sustainable Development Goals.

Part II. GEO Initiatives in Support of Global Policy Frameworks

9. EO4SDG: A GEO Initiative on Earth Observations for Sustainable Development Goals.

10. GEO Global Agricultural Monitoring and Global Policy Frameworks.

11. The Global Observation System for Mercury (GOS4M): Earth Observation Applications for the Minamata Convention on Mercury.

12. The Group on Earth Observations Carbon and Greenhouse Gas Initiative.

13. The GEO-DARMA Framework as a Mechanism for Future Increased Use of Satellite Data in Pursuit of Global Domestic Resource Mobilization Goals.

September 2022 <u>Link</u>

Thank you

Argyro.Kavvada@nasa.gov August 9, 2022 @E04SDG У

EARTH SCIENCE APPLICATIONS WEEK 2022

Environmental Justice @ DEVELOP

- 10-week feasibility studies that apply Earth observations to inform decision making
- Conducted 20+ projects in the past 5 years collaborating with non-profits and local governments
- Identify how Earth observations and socioeconomic data can be combined to better understand the inequities and injustices that some communities face and support informed decision making and action to address them
- Project themes: extreme heat & urban heat island effects, urban tree canopy coverage, urban flooding, and landslide risk

DEVELOP EJ Projects in 14 States

Milwaukee Urban Development

Assessing the Drivers of Urban Flood Vulnerability in Milwaukee using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Urban Flood Risk Mitigation Model

TEAM: Jack Acomb, Annika Harrington, Lisa Sun, Madeleine Tango

ADVISORS: Dr. Kenton Ross, Lauren Childs-Gleason

EARTH SCIENCE APPLICATIONS WEEK 2022

STUDY AREA AND PERIOD

METHODOLOGY: InVEST MODEL

RESULTS: HISTORIC REDLINING

Historically redlined neighborhoods are associated with higher flood depths.

Grade A, developing
Grade B, developed
Grade C, declining
Grade D, declined

Kansas City Disasters

Assessing Environmental and Socioeconomic Factors of Urban Flood Vulnerability in Kansas City, Kansas

TEAM: Hadwynne Gross, M. René Castillo, Eric Sjöstedt, Raychell Velez **ADVISORS:** Dr. Kenton Ross, Tyler Pantle (Fellow)

> EARTH SCIENCE APPLICATIONS WEEK 2022

COMMUNITY CONCERNS & PROJECT PARTNERS

Kansas City experiences exposure of raw sewage and excessive flooding due to **overwhelmed combined sewer systems**.

Neighborhoods affected by disinvestment and historical redlining face higher levels of **social vulnerability**.

Local communities lack access to resources needed to provide financial and temporal insight for urban flood mitigation.

Groundwork USA

Jalisa Gilmore Lawrence Hoffman

Groundwork Northeast Revitalization Group

Ben Carpenter Rev. Adrianne Showalter-Matlock

EARTH OBSERVATIONS & METHODOLOGY

Global Precipitation Measurement Integrated Multi-satellitE Retrievals (GPM IMERG)

RESULTS

Special thanks to Tyler Pantle (Fellow), Celeste Gambino (Senior Fellow), and Dr. Kenton Ross (Science Advisor) for all their help with this project.

InVEST Outputs

Runoff Retention (m³)

Environmental Justice

0 3 6 miles

Minority

Low Income

Albuquerque Urban Development

Enhancing Urban Cooling Interventions by Modeling Urban Forestry through NASA Earth Observations in Albuquerque, New Mexico

TEAM: Ritisha Ghosh, Robert Stewart, Christina Dennis, Richard Kirschner, Steven Nystrom

ADVISORS: Dr. David Hondula, Dr. Kenton Ross, Ryan Hammock

EARTH SCIENCE APPLICATIONS WEEK 2022

Background: Urban Heat Islands & Green Infrastructure

Methodology

ISS: ECOSTRESS

70 meter resolution, temporal revisitation 1-7 days

Landsat 8 TIRS

100 meter resolution, (LST product gridded at 30 meters), temporal revisitation 16 days

InVEST Urban Cooling Model

ENVI-Met Microclimate Simulation: Human Thermal Comfort

UHEAT 2.0 Heat Vulnerability

Least Priority

Greatest

Priority

Results

Heat Mitigation Index:

With the current green spaces available, how well can different areas in Albuquerque reduce excess heat?

Thermal Comfort Index:

How comfortable does the average human feel in this area? How does this change if we add trees?

FROM SPACE TO THE STREETS: USING SATELLITE DATA TO TRACK NEIGHBORHOOD-SCALE AIR INEQUALITY

Gaige Kerr, George Washington University

Special thanks to Susan Anenberg, Daniel Goldberg, Natalie Youssef, Lauren Johnson, Qian Xiao, and Colleen Heck

Recently-launched satellites provide increasingly high resolution NO₂ estimates

Nitrogen dioxide (NO₂) measured by the TROPospheric Monitoring Instrument (TROPOMI) represents important advancements over predecessor instruments.

Satellite data paired with demographics provide neighborhood-level perspectives on environmental justice

In California's Central Valley, census tractaveraged NO₂ from TROPOMI was higher in communities of color in 2019.

Racial relative disparities in pollutionattributable health burdens are widening

Successful NO₂-attributable pediatric asthma cases [per 100000] regulatory measures have reduced the public health damages associated with air pollution, but uneven reductions have resulted in widening disparities.

Most white = Communities with share of white residents > 90th percentile

Least white = Communities with share of white residents < 10th percentile

SOURCE: KERR ET AL. (SUBMITTED) – PRELIMINARY RESULTS, DO NOT QUOTE OR CITE

GAIGEKERR@GWU.EDU | 4

Satellites can track changes in NO_2 and associated disparities in near-real time

The COVID-19 pandemic reduced, but did not eliminate, NO_2 disparities in the U.S.

In many cities, the least white communities experienced higher NO_2 levels during the pandemic than the most white communities faced prior to the pandemic.

SOURCE: KERR ET AL. (2021) PROC NATL ACAD SCI USA

"Satellite Data for Environmental Justice:" A NASA-funded scientiststakeholder partnership

We work with public health and air qualities agencies to assist in the use of NASA data and tools for the public benefits, specifically for environmental justice screening and mapping tools.

All are welcome to attend our **monthly team meetings** to exchange information and build a community of practice about using satellite data for EJapplications.

When: Every first Wednesday of the month Time: 11am- 12:30pm EST Where: Zoom

Contact us for more information/ how to get involved!

"Satellite Data for Environmental Justice:" Empowering a better understanding of NO₂ exposure

Datasets that incorporate satellite-derived NO_2 can help the general public and decision makers determine which communities may bear larger burdens from NO_2 .

Research to action

FIRST OPINION

The pandemic made clear who doesn't get to breathe clean air. Now what?

By Gaige Kerr and Susan Anenberg Aug. 16, 2021

Reprints

In many urban areas, the most marginalized communities live and work disproportionately close to major highways and interstates.

May 16, 2022

Environmental Protection Agency EPA Docket Center, OAR, Docket EPA–HQ–OAR–2019– 0055 Mail Code 28221T 1200 Pennsylvania Avenue NW Washington, DC 20460

Re: Docket EPA-HQ-OAR-2019-0055, Proposed Rule and Related Materials for Control of Air Pollution from New Motor Vehicles: Heavy-Duty Engine and Vehicle Standards

On March 7, 2022, the EPA released proposed standards to reduce NOx emissions from heavy-duty vehicles (HDVs) and engines. We are researchers focused on understanding the health and environmental impacts of nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone pollution, particularly stemming from vehicle tailpipe emissions. We have published dozens of peer-reviewed publications on these topics over the past 15 years. Thank you for considering these evidence-based comments on the proposed standards.

SOURCES: STAT NEWS, EPA, ENVIRONMENTAL DEFENSE FUND

GAIGEKERR@GWU.EDU | 8

Applied Remote Sensing Training (ARSET)

Satellite Remote Sensing for Measuring Urban Heat Islands and Constructing Heat Vulnerability Indices

EARTH SCIENCE APPLICATIONS WEEK 2022

Urban Heat Islands

- Urban areas experience higher temperatures than outlying areas. This difference in temperature is what constitutes an urban heat island (UHI).
- Difference in temperature has to do with changes in radiative and thermal properties of impervious surfaces i.e., heat-absorbing buildings and pavement.
- Temperatures vary within cities due to the spatial distribution of water, soil, vegetation, and impervious surfaces.

Monitoring Urban Heat Islands – SUHI

• Satellite thermal remote sensing measures SUHI and provides consistent and repeatable observations of the Earth's surface at various spatial (from local to global) and temporal (diurnal, seasonal, and inter-annual) scales.

Monitoring Urban Heat Islands – SUHI

• Surface Urban Heat Islands (SUHI) represent the difference of land surface temperature (LST) in urban relative to non-urban areas, as well as "hot spots" within urban areas.

$\Delta Tu - r = Tu - Tr$

- where Δ Tu-r is UHI intensity, Tu is urban temperature and Tr is rural temperature.
- The intensity of the heat island is the simplest quantitative indicator of the thermal modification imposed by urban relative to non-urban areas.

 Imports (3 entries) 'var aoi: Polygon, 4 vertices 'var aoi: Polygon, 4 vertices 'var aoi: Polygon, 4 vertices 'var urbins: Multipolygon, 20 vertices 'var Urban: Multipolygon, 20 vertices 'mageCollection LANDSAT/LC08/C02/T1_L2 (25 elements) ImageCollection LANDSAT/LC08/C02/T	pector Console Tasks	Landsat_LST_SUHI Get Link 👻 Save 🖵 Run 👻 Reset 👻 Apps 🗱	Landsa
1 * /* Jandsat 8 ST Jandsat 8 ST 2 Author: Sean McCartney (sean.mccartney@nasa.gov) Jandsat 8 ST Jandsat 8 ST 3 ARSET Training: Satellite Remote Sensing for Measuring Urban Heat Islands and Constructing Heat Vulnerability Indices Jandsat 8 ST Jandsat 8 ST 4 August 2, 2022 - August 11, 2022 ImageCollection LANDSAT/LC08/C02/T1_L2 (25 elements) Jandsat ST (Celsius) Jandsat ST (Celsius) 6 This code is free and open. By using this code you agree to cite the following reference in any publications derived from them: MASA Applied Remote Sensing Training (ARSET) program Jandsat ST (Celsius) Jandsat ST (Ce		<pre> Imports (3 entries) ■ var aoi: Polygon, 4 vertices □ □ var Rural: MultiPolygon, 20 vertices □ □ var lurban: MultiPolygon, 20 vertices □ □ </pre>	
ARSET Training: Satellite Remote Sensing for Measuring Urban Heat Islands and Constructing Heat Vulnerability Indices August 2, 2022 - August 11, 2022 August 2, 2022 - August 11, 2022 This code is free and open. By using this code you agree to cite the following reference in any publications derived from them: NASA Applied Remote Sensing Training (ARSET) program This example shows how to analyze and visualize Landsat surface temperature (ST) time series from Landsat 8 over Washington, DC (USA) from a defined area of interest (aoi). Parameters: In: DATE_RANGE YEAR_RANGE STUDYBOUNDS DISPLAY aoi: delineated rectangle for area of interest Jac		1 * //*	1 -
8 NASA Applied Remote Sensing Training (ARSET) program 9 This example shows how to analyze and visualize Landsat surface temperature (ST) time series 11 from Landsat 8 over Washington, DC (USA) from a defined area of interest (aoi). 12 Parameters: 13 Parameters: 14 In: DATE_RANGE 15 YEAR_RANGE 16 STUDYBOUNDS 17 DISPLAY 18 aoi: delineated rectangle for area of interest		 3 ARSET Training: Satellite Remote Sensing for Measuring Urban Heat Islands and Constructing Heat Vulnerability Indices 4 August 2, 2022 - August 11, 2022 5 6 This code is free and open. 	3 4 5 6
11 from Landsat 8 over Washington, DC (USA) from a defined area of interest (aoi). Jsc 12 Parameters: Mean ST clipped to study area Jsc 14 In: DATE_RANGE Jsc Jsc 15 YEAR_RANGE Jsc Jsc 16 STUDYBOUNDS Jsc Jsc 17 DISPLAY Jsc Histogram of ST_B10 18 aoi: delineated rectangle for area of interest Iso,000	. Computing mean ST across image collection JSON	8 NASA Applied Remote Sensing Training (ARSET) program	8
13 Parameters: Jsc 14 In: DATE_RANGE Jsc 15 YEAR_RANGE Histogram of ST_B10 16 STUDYBOUNDS ST_B10 17 DISPLAY Jsc 18 aoi: delineated rectangle for area of interest Jsc		11 from Landsat 8 over Washington, DC (USA) from a defined area of interest (aoi).	11
16 STUDYBOUNDS 17 DISPLAY 18 aoi: delineated rectangle for area of interest	an ST clipped to study area JSON	13 Parameters: 14 In: DATE_RANGE	13 14
		16 STUDYBOUNDS 17 DISPLAY	16 17
	Layers Map Satellite		8 ⁰) 🔍

Global High Resolution Daily Extreme Urban Heat Exposure (UHE-Daily), v1 (1983–2016)

- Combine CHIRTS-daily WBGTmax record with the Global Human Settlement Layer Urban Centre Data Base
- Create a record of WBGTmax for every urban settlement on the planet from 1983 – 2016 (150 million observations).
- Apply ISO threshold to identify dangerous hot-humid days (e.g., WBGTmax > 30°C) for each city on the planet, from 1983 – 2016 to produce a record of all urban hot-humid heat waves.

EARTH SCIENCE APPLICATIONS WEEK 2022 THANK YOU! JOIN US TOMORROW 1-4PM EDT SLIDES & RECORDINGS WILL BE POSTED BY AUG 31st

्रित्री