

EARTH SCIENCE APPLICATIONS WEEK 2022

Day 2: Climate & Water Resources

August 10, 2022

EARTH SCIENCE APPLICATIONS WEEK 2022 WEEK 2022 DAY 2 – AUGUST 10th: CLIMATE & WATER RESOURCES

Event Attendance Guidelines

- 1. Please stay muted with cameras off
- 2. Post questions for speakers in the chat & they will be answered there

© CLIMATE & RESILIENCE APPLICATIONS Dr. Allison Leidner Program Manager **Climate Program**

Allison.K.Leidner@NASA.gov

NASA & Climate

- NASA observations and models provide enormous insight into how and why climate is changing, as well as what this means for people around the world and how we can adapt
- Climate change will impact NASA facilities, assets, and operations
- NASA invests in advancing aeronautics research to reduce contributors to climate change

Global Temperature Anomalies: 1880-2021 https://svs.gsfc.nasa.gov/4964

Kennedy Space Center

Climate & Resilience

- A new applications area in Applied Sciences that is in development!
- Big picture: It will address uses of Earth science capabilities to inform policy analyses and business decisions related to climate factors; it will support public and private sector decision-making using Earth science data and models to reduce risks and build resilience in integrated human and natural systems

The Fourth National Climate Assessment Coastal Effects chapter highlighted the integrated socioeconomic and environmental impacts and consequences of a changing climate.

Where are we now?

- Understanding the programmatic landscape in the public and private sector
- Assessing climate information supply and demand to identify areas where NASA observations, models, and knowledge can make an impact
- Potential topics: infrastructure, coastal resilience, climate information systems, climate services, scenario development and analysis, greenhouse gases, energy infrastructure

NASA's Orbiting Carbon Observatory-2 (OCO-2) mission launched in 2014

SEMCOG's climate resilience work includes investigating the impacts of extreme precipitation in stormwater management and transportation planning

SERVIR-CArbon Pilot (S-CAP)

Emil A. Cherrington ^{1,2}, Christine A. Evans ^{1,2}, Africa I. Flores-Anderson ^{1,2}, Eric R. Anderson ², Ashutosh Limaye ², Daniel E. Irwin ²

¹Earth System Science Center, University of Alabama Huntsville ²SERVIR Science Coordination Office, NASA Marshall Space Flight Center

August 10, 2022

CONNECTING SPACE TO VILLAGE & Image Image

SERVIR is a partnership of NASA, USAID, and leading geospatial organizations in Asia, Africa, and Latin America.

- We work with countries and organizations in the use of free and open satellite data to build resilience to climate change and address its contributing causes.
- We co-develop innovative solutions through a network of regional hubs to improve sustainable resource management at local, national and regional scales.
 - We build capacity to address critical challenges in **climate change**, **food security**, **water and related disasters**, **land use**, and **air quality**.

1

OL

Highlights: SERVIR activities in LC monitoring

- Network est. in 2005, supporting land cover monitoring + other activities in 5 regions
- Partnership w/ regional centers of excellence, international orgs like FAO, private sector
- Scientific backstopping by NASA-funded Applied Science Team
- Focus on capacity development
 - SAR Handbook
 - Collect Earth Online (for reference data collection)
 - Emerging technologies
- Focus on services (leveraging service planning approach)
- Multiple services focusing on wall-to-wall mapping
- Ongoing global land cover change algorithm inter-comparison activity (Flores + Spera)

1. Background: S-CAP objectives

Strengthen the ability of the SERVIR network to integrate greenhouse gas (GHG) estimation into services & other activities

- Development of transparent & replicable methodologies for GHG estimation -> open science / demystification
- Development of GHG estimates for pilotcountries-> ongoing SERVIR global land coverchange algorithm inter-comparison
- Integrate GHG estimation into SERVIR LC services

•

- Collaboration w/ NASA CMS scientists -> strengthen SERVIR GHG monitoring capacities
- Devt. of training materials for GHG estimation

3. Results: Global & Regional Remote Sensing data

Guyana	Z			Ghana				Thailand	5
LC Dataset	AGB Dataset	Change in Forest Area (ha./yr)	Emissions = Area x AGB (per year)	LC Dataset	AGB Dataset	Change in Forest Area (ha./yr)	Emissions = Area x AGB (per year)	LC Dataset	
MCD12Q1	IPCC Tier 1	21,924.83	5,392,192.69	MCD12Q1	IPCC Tier 1	36,677.75	4,165,242.66	MCD12Q1	I
JAXA F/NF	Saatchi 2011	37,705.40	2,426,659.22	JAXA F/NF	Saatchi 2011	60,680.63	1,500,607.58	JAXA F/NF	S
GFW	Avitable 2015	8,011.96	2,392,852.87	GFW	Avitable 2015	33,545.45	921,829.09	GFW	A 2
MapBiomas	GeoCarbon 2020	15,334.04	3,457,519.98	USGS	GeoCarbon 2020	106,502.68	2,737,118.93	RLCMS	(2

CO2e/year at the national scale"

Bangladesh	Level and L		
LC Dataset	AGB Dataset	Change in Forest Area (ha./yr)	Emissions = Area AGB (per year)
MCD12Q1	IPCC Tier 1	19,286.22	1,688,512.99
JAXA F/NF	Saatchi 2011	50,832.31	2,687,850.00
GFW	Avitable 2015	13,892.44	1,037,209.73
RLCMS	GeoCarbon 2020	10,051.61	831,067.32

LC Dataset	AGB Dataset	Change in Forest Area (ha./yr)	Emissions = Area x AGB (per year)
MCD12Q1	IPCC Tier 1	98,035.05	7,974,249.61
JAXA F/NF	Saatchi 2011	183,029.00	5.836.135.91
GFW	Avitable 2015	92,000.00	2,416,840.00
RCMRD	GeoCarbon 2020	192,816.67	4,249,987.84

3. Results: Global LCC Intercomparison Project Algorithms - Bangladesh

Continuous Change Detection and Classification -Spectral Mixture Analysis (CCDC-SMA) algorithm 2000-2019 https://t.co/M3pVPLQPE1

Parameters

Threshold: 4450 Number of consec: 5 Start year: 2000 End year: 2019 Start day: 1 End day : 365 Forest mask: Hansen GFW - "treecover2000" Deforestation mask: RLCMS 2019 non forest cover

LandTrendr spectral-temporal segmentation algorithm. 1990-2020 https://code.earthengine.google.com/?accept_repo =users/emaprlab/public

Parameters Collection: startYear = 1990 endYear = 2020 startDay = 01-01 endDay = 12-31 Landtrendr:

Change:
delta: loss
sort: greatest
year: start: 1990
end: 2020
mag: 100
dur: 4
preval: 300

maxSegments: 6 spikeThreshold: 0.9 vertexCountOvershoot: 3 preventOneYearRecovery: true recoveryThreshold: 0.25 pvalThreshold: 0.05 bestModelProportion: 0.75 minObservationsNeeded: 6

sort: greate
year: start:
end: 2020
mag: 100
dur: 4
preval: 300

mmu: 8

Change Algorithm	Change in area (ha/yr)	AGB dataset	Carbon stock	Emissions (tons CO ₂ e)
CCDC-SMA	60,767.18	Saatchi et al 2011	146.48	3,540,660.43
CCDC-SMA	60,767.18	Avitable 2015	45.48	8,901,176.32
CCDC-SMA	60,767.18	GeoCarbon 2020	117.73	2,763,691.28
LandTrendr	8,033.19	Saatchi et al 2011	130.91	1,051,624.47
LandTrendr	8,033.19	Avitable 2015	81.54	655,026.04
LandTrendr	8,033.19	GeoCarbon 2020	135.13	1,085,524.51

4. Implications: Policy Relevance

- Improved understanding of carbon dynamics (nationally, regionally)
- USG support for climate change mitigation activities

USAID's Global Climate Change program's Sustainable Landscapes goal "to assist countries to **reduce greenhouse gas emissions from deforestation and land degradation and to enhance sequestration of carbon** associated with sound land use and management" Glasgow Leaders' Declaration (COP26) goal of global net zero deforestation by 2030: "conserve forests and other terrestrial ecosystems and accelerate their restoration" SDG Target 15.2: "By 2020, promote the implementation of **sustainable management of all types of forests**, **halt deforestation**, restore degraded forests and substantially increase afforestation and reforestation globally"

5. Future activities: 2022-2023

- Technical Assessment Group (TAG)
- Integration of outputs into existing hub land cover services
- **Capacity development activities** with SERVIR hubs / devt. of training materials
- Collaboration with NASA DEVELOP
- Prototyping of S-CAP platform for integration of external LC, AGB data -> *Bring Your Own Data (BYOD)*
- Scientific publications

Google Earth Engine App & Estimation Ensemble

Pilot Country	LC Dataset	AGB Dataset	Sample Period		Average Change in Forest Area (ha./year)	AGB Carbon Stock (tons CO2/ha.)	BGB Carbon Stock (tons CO2/ha.)	Total Biomass (AGB+BGB)		Total Carbon Stock (Total Biomass X 0.48)	Multiplier (44/12)	Total CO2e (Carbon Stock X (44/12)	Carbon Emission (Total CO2e * Area)	Emissions = Area x AGB (whole sample period)	Emissions = Area x AGB (per year)
Costa Rica	MCD12Q1	FREL	2000-2014	395,358.29	26,357.22	300.148	68.82	368.97	0.48	177.11	3.666666667	649.39	256,740,612.94	118,666,000.03	7,911,066.67
Costa Rica	MCD12Q1	IPCC Tier 1	2000-2014	395,358.29	26,357.22	204.225	56.14	260.37	0.48	124.98	3.666666667	458.25	5 181,171,671.25	80,742,046.78	5,382,803.12
Costa Rica	MCD12Q1	Saatchi et al 2011	2000-2014	395,358.29	26,357.22	179.36	44.84	224.20	0.48	107.62	3.666666667	394.59	156,005,218.37	70,911,462.89	4,727,430.86
Costa Rica	LandTrendr	FREL	2000-2020	88,351.55	5,890.10	300.148	68.82	368.97	0.48	177.11	3.666666667	649.39	57,374,365.67	26,518,541.03	
Costa Rica	LandTrendr	IPCC Tier 1	2000-2020	88,351.55	5,890.10	204.225	56.14	260.37	0.48	124.98	3.666666667	458.25	40,486,815.06	18,043,595.30	1,202,906.35
Costa Rica	LandTrendr	Saatchi et al 2011	2000-2020	88,351.55	5,890.10	118.84	29.71	148.55	0.48	71.30	3.666666667	261.45	5 23,099,336.04	10,499,698.20	699,979.88
Costa Rica	GFW code	FREL	2001-2014	192,099.89	13,721.42	300.148	68.82	368.97	0.48	177.11	3.666666667	649.39	124,747,209.69	57,658,397.78	4,118,456.98
Costa Rica	GFW code	IPCC Tier 1	2001-2014	192,099.89	13,721.42	204.225	56.14	260.37	0.48	124.98	3.666666667	458.25	5 88,029,159.87	39,231,600.04	2,802,257.15
Costa Rica	GFW code	Saatchi et al 2011	2001-2014	192,099.89	13,721.42	145.79	36.45	182.24	0.48	87.47	3.666666667	320.74	61,613,734.52	28,006,242.96	2,000,445.93
Costa Rica	JAXA F/NF	FREL	2007-2017	289,293.29	28,929.33	300.148	68.82	368.97	0.48	177.11	3.666666667	649.39	187,863,359.57	86,830,802.41	8,683,080.24
Costa Rica	JAXA F/NF	IPCC Tier 1	2007-2017	289,293.29	28,929.33			260.37	0.48	124.98	3.666666667	458.25			
Costa Rica	JAXA F/NF	Saatchi et al 2011	2007-2017	289,293.29	28,929.33	160.39	40.10	200.49	0.48	96.23	3.666666667	352.86	102,079,451.72	46,399,750.78	4,639,975.08
Costa Rica	FREL	FREL	2000-2014	84,242.89	5,616.19	300.148	68.82	368.97	0.48	177.11	3.666666667	649.39	54,706,254.46	25,285,334.95	1,685,689.00
Costa Rica	FREL	IPCC Tier 1	2000-2014	84,242.89	5,616.19	204.225	56.14	260.37	0.48	124.98	3.666666667	458.25	38,604,034.77	17,204,504.21	1,146,966.95
Costa Rica	FREL	Saatchi et al 2011	2000-2014	84,242.89	5,616.19				0.48		3.666666667				
Costa Rica	CCDC-SMA	FREL	2007-2019	534,944.75	41,149.60	300.15	68.82	368.97	0.48	177.11	3.666666667	649.39	347,386,273.36	160,562,596.82	12,350,968.99
Costa Rica	CCDC-SMA	IPCC Tier 1	1987-2019	240,495.17	7,515.47	204.23	56.14	260.37	0.48	124.98	3.666666667	458.25	5 110,206,141.61	49,115,125.89	1,534,847.68
Costa Rica	CCDC-SMA	Saatchi et al 2011	1987-2019	240,495.17	7,515.47				0.48		3.666666667				
Peru	MCD12Q1	FREL	2001-2014	2,320,296.95	145,018.56	324.98	83.98	408.96	0.48	196.30	3.666666667	719.77	1,670,079,207.58	754,050,102.81	47,128,131.43
Peru	MCD12Q1	IPCC Tier 1	2001-2014	2,320,296.95	145,018.56	193.10	53.59	246.70	0.48	118.41	3.666666667	434.18	1,007,438,038.42	448,058,622.23	28,003,663.89
Peru	MCD12Q1	Saatchi et al 2011	2001-2014	2.320.296.95	145,018.56	205.53	51.38	256.91	0.48	123.32	3.666666667	452.17	1.049.159.390.69	476,890,632.13	29,805,664.51
Peru	LandTrendr	FREL	2000-2018	391.688.78	20.615.20	324.98	83.98	408.96	0.48	196.30	3.666666667	719.77	281.925.672.91	127.291.018.10	6.699.527.27
Peru	LandTrendr	IPCC Tier 1	2000-2018	391.688.78	20.615.20	193.10	53.59	246.70	0.48	118.41	3.666666667	434.18	170.065.375.11	75.636.669.21	3.980.877.33
Peru	LandTrendr	Saatchi et al 2011	2000-2018	391,688.78	20,615.20	176.47	44.12	220.59	0.48	105.88	3.666666667	388.23	152,066,899.87	69,121,318.12	3.637.964.11
Peru	GFW code	FREL	2000-2014	2.043,251.58	136,216,77	324.98		408.96	0.48	196.30	3.666666667	719.77			
Peru	GFW code	IPCC Tier 1	2000-2014	2.043,251,58	136,216,77	193.10		246.70		118,41	3.6666666667	434,18			
Peru	GFW code	Saatchi et al 2011		2,043,251.58	136,216,77	197.54		246.93	0.48	118.52	3.6666666667	434.55			
Peru	JAXA F/NF	FREL	2007-2017	4.474.594.75	447,459,48	324.98		408.96		196.30	3.6666666667	719.77			
Peru	JAXA F/NF	IPCC Tier 1	2007-2017	4,474,594.75	447,459,48	193.10		246.70		118.41	3.666666667	434.18			86,406,214,46
Peru	JAXA F/NF	Saatchi et al 2011		4,474,594,75	447,459,48			220.31	0.48	105.75	3.6666666667	387.75			78.864.732.47
Peru	FREL	FREL	2001-2014	1.712.284	122,306.00	324.98		408.96	0.48	196.30	3.6666666667	719.77			39.747.003.88
Peru	FREL	IPCC Tier 1	2001-2014	1,712,284	122,306.00	193.10		246.70		118.41	3.6666666667	434.18			23,617,777.82
Peru	FREL	Saatchi et al 2011		1.712.284	122,306.00		00.00	240.10	0.48	110.41	3.6666666667	404,10		22010401003.04	20,011,111,01
Shana	MCD12Q1	FREL	2001-2010	366,777.50	36,677.75		10.73	53.65	0.48	25.75	3.6666666667	94.42	34.632.598.66	15.742.090.30	1,574,209.03
Shana	MCD12Q1	IPCC Tier 1	2001-2010	366.777.50	36.677.75			277.23		133.07	3.6666666667	487.92			

6. Summary: <u>SERVIR-CA</u>rbon <u>P</u>ilot (S-CAP)

Why?

- CC mitigation: Countries need to monitor + report on CO_2 / GHG emissions
- Simple transition from LC data to GHG emission estimation
- Support Hubs' integration in REDD+ reporting
- Quantifying <u>uncertainty</u>

What?

- Capacity building activities w/ Hubs
- GHG estimates for pilot countries
- Hub integration of GHG emission estimates into their LC services
- Internal SERVIR prototype platform

Who?

- SERVIR global network
 - SCO, Hubs, Applied Sci. Team, Technical Assessment Group (Duncanson, Ogle, Olofsson)
 - 1 pilot country per SERVIR region
- Linkages w/ SilvaCarbon

How?

- Analysis of existing data, incl. LC outputs from Hub services
- Analysis of data from IPCC's Emission Factor Database
- Application of methodologies consistent w/ IPCC's Good Practice Guidance

Hawaii Climate

Utilizing Earth Observations to Model Probable Wetland Extents, Model Sea-Level Rise Inundation Risk, and Assess Impacts on Historic Hawaiian Lands

TEAM: Connor Racette, Ian Lee, Lisa Tanh, Matilda Anokye

ADVISORS: Dr. Roberta Martin, Dr. Jiwei Li, Dr. David Hondula, Ryan Hammock

EARTH SCIENCE APPLICATIONS WEEK 2022

Project Partners & Objectives

- County of Hawaii, Planning Department
- > State of Hawaii, Department of Land and Natural Resources
- > Arizona State University, Center for Global Discovery and Conservation Science

Create a wetlands extent map **Model** short-term flood inundation

Provide insight on sea level rise risk

Wetland Extent Map

Wetland Intrinsic Potential tool: Miller, D., and Halabisky, M. (2019)

Sea Level Inundation Model

- Intra-event accuracy: ~90%
- Results consistently rank sea surface temperature anomaly (SSTA) and precipitation as high importance features
- Feasibility study showing the possibility of using RF and important features for flood prediction

Base map: Esri, NASA, NGA, USGS

Wichita Climate

Using Satellite Data to Identify Neighborhoods Vulnerable to Extreme Heat for Equitable Climate Mitigation and Planning

TEAM: Melisa Ashbaugh, Brooke Laird, Muskaan Khemani, Sadie Murray

ADVISORS: Lauren Childs-Gleason, Dr. Kenton Ross

EARTH SCIENCE APPLICATIONS WEEK 2022

CLIMATE ADAPTATION THROUGH THE LENS OF ENVIRONMENTAL JUSTICE

Community Concerns

- Balancing economic vitality and environmental quality
 Continuing tree loss
- More extreme weather events

Government Goals

- Develop a Climate Adaptation and Mitigation Plan
- Explore using this research to support future grant applications

TREE CANOPY

- Unequal distribution of tree canopy
- Areas of highest heat exposure have the least canopy cover
- Classified 20%
 more trees than
 the NLCD

HEAT RISK INDICES

- We identified 17 high risk census tracts
 - 82% are also identified as disadvantaged by CEJST

Spatial Trends

- High risk tracts circle the city center
- SW tracts have high exposure tracts with medium vulnerability
- Eastern tracts have medium exposure and high vulnerability

WATER RESOURCES & WESTERN WATER **APPLICATIONS OFFICE** INTRODUCTION Sarah Brennan Deputy Program Manager on behalf of Dr. Brad Doorn, Program Manager Water Resources Program

NASA Water Data

- Precipitation
- Snow Cover
- Groundwater
- Soil Moisture
- Water Quality Indicators

Why Does NASA have a water resources application area?

NASA Satellite Data

Sustained use of NASA data in resource management decisions.

What drives us...

"The work with GRAPEX has dramatically improved our ability to accurately schedule irrigation...Once we implement the findings of GRAPEX across our entire vineyard acreage, we will reduce the amount of water we apply for irrigation by up to 25%, and that's a very, very big number."

Nick Dokoozlian, vice president of viticulture, chemistry and enology at Gallo, worked with a project supported by Water Resources application area.

"These new data deliver localized moisture readings – this is what matters to the farmer."

Zhengwei Yang, U.S. Department of Agriculture National Agricultural Statistics Service "Together we are working to help take watershed models that were developed by NASA and USGS to understand how water is flowing on the landscape and then use these models to quantify pollution or the nutrients in that water... In analyzing this information, we can pinpoint areas on the landscape to focus our efforts on and develop different strategies of controlling sources of pollution."

Marcus Beck, Tampa Bay Estuary Program

"We value the partnership with NASA and the ability of their remote-sensing resources to integrate data over large spatial scales, which is useful for assessing drought impacts."

Jeanine Jones, Interstate Water Resources Manager, California Department of Water Resources

A second scenario, one developed without satellite data showed that there would likely be a 7-day delay in public health warnings, resulting in increased healthcare costs, lost work hours and other economic impacts. Their conclusion was that the satellite early warning saved the community about \$370,000

How? Through user-centered collaboration

- Relationship development
- User/partner/community identified needs
- Collaboratively matching capabilities and building out applications

Local Resource Managers and Decision makers

Federal and international

Non-profit and private sector

The Nature Conservancy

American Water Works Association Dedicated to the World's Most Important Resource

Portfolio of Applied Research Projects

Western Water Applications Office (WWAO) Partnership Engagement and Program Activities

Portfolio of Applied Research Projects Western Water Applications Office (WWAO)

Partnership Engagement and Program Activities

WWAO's mission is to improve how water is managed by getting NASA data, technology and tools into the hands of western water managers.

To achieve this, WWAO:

- Identifies Water Needs that NASA can address
- Makes Connections between stakeholders and NASA to address needs
- Transitions water applications into operations for sustainable and long-term impact

https://wwao.jpl.nasa.gov/

Above: WWAO's Needs Assessment workflow

River Basin Needs Assessments Completed:

- o Columbia River Basin
- Missouri River Basin
- o Colorado River Basin Needs
- o Rio Grande River Basin

Portfolio of Applied Research Projects Western Water Applications Office (WWAO)

Partnership Engagement and Program Activities

DROUGHT

Communicating the ways NASA Strengthens Our **Resilience to Drought**

- Improves drought monitoring including forecasts and early warning
- Supports drought management and scenario planning
- Improves water supply Forecasts
- Informs efficient water use practices

RESEARCH TO OPERATIONS

"These satellite-derived vegetation condition indices and soil moisture condition maps ...contribute extensively to operations and research on various issues, including agricultural sustainability and extreme weather events, such as flooding and drought." - Rick Mueller, USDA NASS Spatial Analysis Research Lead

Above Screenshot of CropCASMA: https://nassgeo.csiss.gmu.edu/CropCASMA/

"OpenET allows planning for agricultural water needs in a way that just wasn't possible before." - E. Joaquin Esquivel, Chair of the California State Water Resources Control Board

Left: Screenshot of OpenET platform https://openetdata.org

Portfolio of Applied Research Projects Western Water Applications Office (WWAO)

Partnership Engagement and Program Activities

Three foci for the upcoming year:

- International Water Strategy (Next presentation!)
 - o International community needs
 - U.S. Department of State
 - White House Global Water Security Strategy
- Private Sector Engagement
- Water Quality Engagement

GET INVOLVED!

ENGAGE

ACCESS

DRIVE

GET INVOLVED!

<u>ENGAGE</u>

WITH OUR COMMUNITY

ACCESS

• Stay connected:

> WRP listserv: : <u>https://lists.nasa.gov/mailman/listinfo/nasa-water-resources</u>

DRIVE

- WWAO newsletter: <u>https://wwao.jpl.nasa.gov/subscribe/</u>
- Support, encourage, and bring in new voices to the discussion especially early career scientists, social scientists, and local and regional community members!
- Advertise, <u>communicate</u>, and become advocates for your own work and each other's work!
- Attend <u>sessions</u>, events, and team meetings!

GET INVOLVED!

ENGAGE

ACCESS AND UTILIZE

Access NASA Data

- NASA Earth Data
- Earth Information System: <u>Freshwater</u>

Resources

- > <u>ARSET</u>
- > <u>Applied Sciences Guidebook</u>
- > <u>Water and Agricultural Pathfinder</u>

DRIVE

Examples of open Tools and Applications supported by WRP and WWAO:

- CropCASMA access to high-resolution data to map soil moisture and crop vegetation conditions across the US
- CyAN web and app based tool that provides daily, weekly, and true-color satellite data on potential harmful algal blooms
- Global Water Monitor satellite data products relevant to lakes, reservoirs, river channels, wetlands and global mean sea level
- Open ET easily accessible satellite-based estimates of evapotranspiration (ET) at the field scale
- Soil moisture on GEE Global soil moisture data provides soil moisture information across the globe at 10-km spatial resolution.

GET INVOLVED!

ENGAGE

ACCESS

Provide feedback

- Submit a <u>Water Management Need on WWAO</u> <u>website</u>.
- Contact us via the <u>Applied Sciences website</u>

Lead research

- Identify NASA Grant Opportunities
- Be an Early Adopter

Contribute to the conversations:

AGU, Pecora, AMS, World Water Week, AWWA meetings, AWRA meetings DRIVE THE FUTURE

IN THE NEXT DECADE NASA IS LEADING AN OUTPOURING OF FRESHWATER INFORMATION FROM SPACE

NASA-ISRO SAR (NISAR)

Launch Target: 2023

Surface Water and Ocean Topography (SWOT)

Launch Target : November 2022

Landsat 9

Launched: September 27, 2021

Up Next!

- 3:20pm: NASA's International Water Strategy Dr. John Bolten & Perry Oddo
- 3:30pm: Project Highlight: California's Groundwater Future: Relating Subsidence & Consumption in the Central Valley - Dr. Kyra Adams
- 3:40pm: Feasibility Study Snapshot: Yampa Water Resources Erin Weitzel
- 3:45pm: Feasibility Study Snapshot: Puget Sound Water Resources Sofia Fall
- 3:50pm: Mission Highlight: Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) - Natasha Sadoff
- 3:55pm: Closing Remarks Lawrence Friedl

NASA Earth

Water Resources Leadership Brad Doorn

John Bolten

ten Sarah Brennan

Indrani Graczyk

Forrest Melton

Stephanie Granger

Thank You!

For further questions, please contact:

- <u>Bradley.doorn@nasa.gov</u>, Program Manager, Water Resources Application Area
- <u>Sarah.Brennan@nasa.gov</u>, Deputy Program Manager, Water Resources Application Area

Water Resources Program International Water Strategy

John D. Bolten, Perry Oddo, and Aarti Arora

EARTH SCIENCE APPLICATIONS WEEK 2022

Meet the Team!

John Bolten

Perry Oddo

Aarti Arora

Motivation

1000 INTERGOVERNMENTAL PANEL ON Climate change

Climate Change 2022

Impacts, Adaptation and Vulnerability

Complex, Compound and Cascading Risks

Weather and climate extremes are causing economic and societal impacts across national boundaries through supply-chains, markets, and natural resource flows, with increasing transboundary risks projected across the water, energy and food sectors (high confidence)

The National Academies of REGINEERING	THE NATIONAL ACADEMIES PRESS			
TABLE S.1 Science and Applications Priorities for the Decade 2017-2027				
Science and Application Area	s Science and Applications Questions Addressed by MOST IMPORTANT Objectives			
Coupling of the Water and Energy Cycles	How do anthropogenic changes in climate, land use, water use, and water storage interact and modify the water and energy cycles locally, regionally and globally and what are the short- and long- term consequences?			

The Washington Post

Harris calls water security a foreign policy priority

Suman Naishadham and Michael Phillis | Jun 1, 2022

Workshop Report and Recommended Path Forward

Transboundary Water: Improving Methodologies and **Developing Integrated Tools to Support Water Security**

Dialogue toward a future framework for Federal coordination and integrated analysis capabilities in support of global water security

Key Findings

Raha Hakimdavar, Danielle Woo Green, Corey Hummel, Thomas

Many existing science and technology capabilities are available to address operational information needs of decision makers regarding transboundary water management, but are often disjointed and not directly connected to enduser communities.

How is NASA addressing water needs?

NASA Applied Sciences Strategic Plan

46

- 1. Applications using **Earth System knowledge are in high demand domestically and internationally** and are prominent within NASA, the Earth science community and beyond.
- 2. A vibrant, diverse, and **growing community** exists with the skills to use, assess value, and communicate the importance of Earth science information on a societal and personal level.
- 3. High-quality applications that incorporate Earth science spark innovations in the economy, environmental sustainability, and public services.

Decadal Survey for Earth Observations		U.S. Global Water Strategy	
H1. Coupling the Water and Energy Cycles How is the water cycle changing?	H2. Prediction of Change What are anthropogenic changes and what are the consequences?	Increasing sustainable access to safe drinking water/sanitation services, adopting key hygiene behaviors	
H3. Freshwater Resources How does water cycle changes affect availability/ biogeochemical cycles?	H4. Hazards, Extremes, and Sea Level Rise How to predict/ prepare/ mitigate extreme events?	Promoting cooperation on shared waters	Strengthening water- sector governance, financing, and institutions

Water Research Nexus

Global Themes

- Governance
 - Transboundary Rights
 - Sovereignty / Conflicts
 - Economics
- Spatial Scale
 - Global / Regional / National
 - Local / Community
 - Individual
- Time Scale
 - Daily fluctuations vs. decadal trends
 - Quantity through time
- Domain
 - Surface Water
 - Groundwater
 - Precipitation

Strategic Vision

Mission Statement:

To facilitate international water management through applied research, capacity building, and improved coordination between NASA, its partners, and stakeholders.

Vision:

To support sustainable and scalable engagements across all sectors of the water community, using NASA's unparalleled capacity to monitor, model, and forecast the global hydrological system.

Goals:

To establish a unified strategy that more efficiently pairs emerging water needs with NASA science capabilities. We aim to accomplish this by building strategic interagency partnerships, seeking out diverse funding opportunities, utilizing state-of-the-art technologies, and observing best practices for knowledge sharing.

This International Water Strategy seeks to establish water metrics for availability, quality, sustainability, accessibility, and resiliency. In doing so, we also recognize the position water holds at the nexus of Food & Agriculture, Climate, Energy, Health & Sanitation, and Human Development.

Strategic Engagement Framework

Understand User Needs

Work with partners through iterative process to understand their specific problems and capabilities to determine best management practices

Leverage Partnerships

Identify linkages with capabilities within the Applied Sciences and through interagency cooperation to craft solutions

Develop Solutions

Formulate coordinated response according to user capabilities and stakeholder needs. Examples could be:

Existing tools and software that can be repurposed with minimal adjustment

Operational models that can be tailored to address specific needs of project partners

Fully-customized software built to specification for new problems

Thinking Outside the Box

- What are relevant laws / policies?
- What capabilities can NASA provide?

Engagement Criteria

- Do engagements align with ASP
 Strategie Plan goals?
 - Strategic Plan goals?
- Do they bring value to USG priorities?

Capturing Impact

- How can engagement inform NASA programs and missions?
- What are best metrics for assessing impact?

Some Current International & Interagency Activities

WATER

RESOURCES

GED GLOWS

GLOBAL WATER SUSTAINABILITY

Water Resources Program International Water Strategy

California's Groundwater Future: Relating Subsidence and Consumption in the Central Valley

Dr. Kyra Adams (Kim) PI: JT Reager JPL Water & Ecosystems Group

> EARTH SCIENCE APPLICATIONS WEEK 2022

Central Valley Aquifer System

California's Central Valley

- Area: 20,000 square miles
- Population:
 - 6.5 million (2018)
- California:
 - 11% of the state's total land area
 - Supplies 60-75% of the state's water
- Agriculture:
 - \$20 billion in crops annually
 - 250 different crops
 - ~50% of United State's nuts, fruits, and vegetables

Groundwater depletion and subsidence

Groundwater Depletion

- 1920-2013: ~ 125 million acrefeet of groundwater drained (1/3 Lake Erie)
- Groundwater depletion to rearrangement of ge matrix and subsidence

SGMA Legal framework

GSA Priority Level Very High High Medium Very Low

Sustainable Groundwater Management Act (2014)

- Groundwater Sustainability Agencies (GSAs):
 - Mandated to institute mgmt. plans that halt overdraft and avoid subsidence by 2020-2022
 - In-situ data availability is inconsistent

Can remotely-sensed datasets be used for depletion-subsidence assessments?

In situ well data availability

In-Situ: Wells

Total Well Stations 7,706

Total Observations 642,736

Number of Observations/Station: Mean: 83.4 St. Dev: 501.06 Maximum: 13,949 Median: 11 Minimum: 1.00

Use Data-Assimilated GRACE/GRACE-FO (1/8 degree, ~12.5 km)

Calculated z-values by sub-basin for all datasets (remove seasonal signals and normalize using st.dev)

Sub-basin scale analyses

Delta-Mendota Sub-basin

GRACE-DA and well

- signals correlated well
- Elastic & inelastic subsidence captured by both GPS and InSAR
- Limits: Interpretation of GPS and geologic information

Kim et al., 2020 JAWRA Vasco et al., 2022 Nature Sci Reports

VIRGO: Visualization of In-situ and Remotely-sensed Groundwater Observations

James Kitchens & DEVELOP 2020 team

VIRGO updates

Waterfall – an artistic visualization tool

Malika Khurana, Noah Deutsch

Yampa Water Resources

Monitoring Water Quality and Evaluating Potential Drivers of Algae Blooms in the Upper Yampa River Watershed

TEAM: Erin Weitzel, Samrin Sauda, Ethan Gates, Morgan Guttman

ADVISORS: Dr. Paul Evangelista, Dr. Catherine Jarnevich, Dr. Tony Vorster, Christopher Choi, Peder Engelstad, Nick Young, Sarah Hettema

EARTH SCIENCE APPLICATIONS WEEK 2022

Analyze trends in water quality over time and fill historical data gaps Assess viability of remote sensing to monitor water quality in the UYRB

Results – Surface Temperature

Conclusions

Fill historical data gaps

Constructed time series plots of lake color and temperature from 1984 to 2021 for 9 waterbodies of interest and maps for 3 lakes of interest

Assess viability of remote sensing to monitor water quality

Lack of significant evaluation data makes it difficult to assess viability of using remote sensing to monitor water quality

Strong correlation between remotely sensed temperature and in-situ temperature

Analyze trends in water quality over time

Mixed trends were found among the 3 lakes for the AVW, BWAI, and green band timeseries

Puget Sound Water Resources

Using Earth Observations to Map Bull Kelp in the Puget Sound, Washington, to Support Conservation and Restoration

TEAM: Sofia Fall, Mike Hitchner, Lily Oliver, Lyndsay Zemanek

ADVISORS: Peder Engelsted, Nicholas Young, Dr. Tony Vorster, Brian Woodward, Dr. Paul Evangelista, Dr. Catherine Jarnevich, Sarah Hettema

EARTH SCIENCE APPLICATIONS WEEK 2022

Project Background

Decline of bull kelp in Puget Sound

Threats to ecological and cultural services

Gaps in local research on bull kelp abundance

Remote Sensing as a Kelp Canopy Monitoring Tool

Is remote sensing a feasible and effective tool for monitoring changes in bull kelp canopy extent over time in the central Puget Sound?

Takeaways

The rigid timing of Landsat 8 and Sentinel-2 imagery acquisition time is an important limitation on mapping bull kelp. Higher resolution sensors and more frequent revisit times can help overcome many of the limitations of remotely sensing kelp extent. While there are limitations, remote sensing can help support the monitoring of kelp, particularly when combined with field and aerial surveys.

The PACE Mission and Applications Program

Natasha Sadoff and Erin Urquhart

NASA Goddard Space Flight Center

EARTH SCIENCE APPLICATIONS WEEK 2022

The PACE Observatory

- PACE is NASA's next great investment in hyperspectral earth imagery and multi-angle polarimetry. *PACE is going to extend ocean biological, ecological, & biogeochemical data records, as well as cloud & aerosol data records.*
- Launch date: January 2024
- 3-year design life; 10-year propellant
- Hyperspectral imager: Ocean Color Instrument (OCI)
 - Spectral resolution: UV to SWIR (340-890 nm every 2.5 nm, with 940, 1038, 1250, 1378, 1615, 2130, & 2250 nm)
 - Temporal resolution: 2 days
 - Spatial resolution: 1-km2 at nadir
- Two multi-angle polarimeters
 - HARP-2: wide swath, hyper-angular, 4 bands across the VIS & NIR
 - SPEXone: narrow swath, hyperspectral (UV-NIR), 5 viewing angles

PACE & Applied Science Objectives

PACE will support water resource management areas related to water supply, demand, and quality through the provision of data on ocean productivity, ocean change, landocean exchange, ocean-atmosphere exchange, ocean environment and ecosystems, algal blooms, and human impacts.

PACE Early Adopters: Pre-Launch Water Applications

Eliza

Coastal an mam

Clarissa Anderson

Applying PACE products to the California Harmful Algae Risk Mapping (C-HARM) System

Dan Aquacultu Applying stainable aqu

Marjorie Friedrichs

Water clarity and particle size from hyperspectral remote sensing reflectance in the Chesapeake Bay

Marina

Near real tim tribution pla erica: Monit applicatio

Richard Stumpf

Discriminating algal blooms in turbid coastal, estuarine and large lake environments

Get Involved

- Register for the 2022 PACE Applications Workshop (virtual, September 14-15)
- Apply to the PACE Early Adopter (EA) Program
 - Test out PACE simulated data alongside PACE Project Science and Science & Application Team members
- Join the PACE Community of Practice (CoP) to stay in touch and receive the PACE Community Newsletter
- Apply for future PACE Solicitations
 - PACE science data product validation and performance assessment (release ~Sep 2022)
 - Next Science & Application Team develop new algorithms and/or applications (release ~Feb 2023)
 - Future applications-focused solicitations postlaunch!

PACE Applications Workshop

September 14-15, 2022 Virtual Event

WELCOME

"We came all this way to ex

tant thing is that we

NASA hosts a flee

ed Earth scie

PACE Community of Practice The PACE community includes a global grap of applied scientific, restartions, while deset this global grap of applied scientific, restartions, What deset this global grap of applied scientific, restartion applied and the science and the science of the benefit their own target audiences. The PACE Applications team has reserved yranged up efforts to grave this community - non formalized through the new <u>PACE Community</u>.

The two teep layed or networking, individual of the teep layed or networking, which are a glace to be new partnerships and generate new interdisbilinary (knowledge, MemBers of the CoP will hear and use and use of the cop layed or the cop will be and the cop will be an exception to be and the cop will be

e hope you will join us, share your work, meet PACE peers, an ntribute to this exciting new community. Register here:

Learn more about PACE EAs and the

Erin Urquhart & Natasha Sadoff <u>PACE-applications@oceancolor.gsfc.nasa.gov</u> <u>https://pace.gsfc.nasa.gov</u>

EARTH SCIENCE APPLICATIONS WEEK 2022 THANK YOU! JOIN US TOMORROW 1-4PM EDT SLIDES & RECORDINGS WILL BE POSTED BY AUG 31st

え