

Earth Observations for Informing Disaster Risk and Response to Drought, Wildfire, and Flooding in Mexico Overview of Data Sets for Floods, Droughts, and Wildfires

May 8, 2023

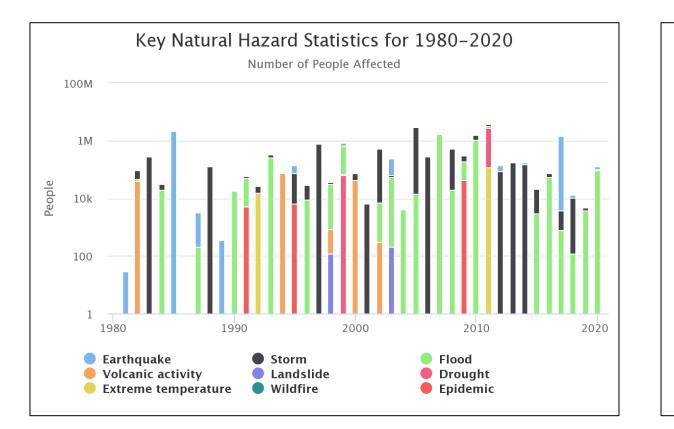
Objective:

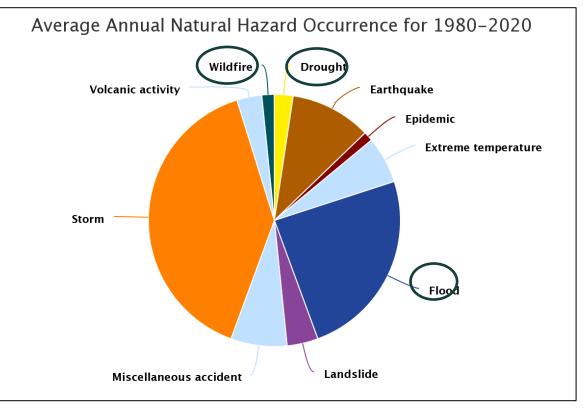
 By the end of this presentation, you will have comprehensive information about Earth observations useful for monitoring flood, drought, and wildfire risks and impacts used in this training.

Credit: Earth Observatory

Credit: Earth Observatory

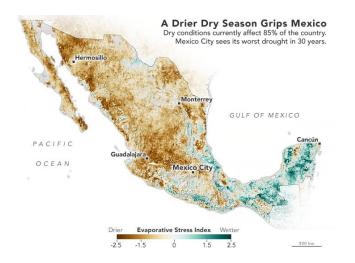
Credit: Earth Observatory


Outline

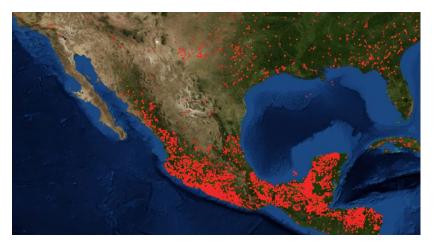

- Atmospheric and land parameters relevant for assessing flood, drought, and wildfire conditions.
- Satellites and sensors relevant for observing floods, droughts, and wildfires conditions.
- Brief review of remote sensing concepts.

Natural Hazards in Mexico

https://climateknowledgeportal.worldbank.org/country/mexico/vulnerability



Floods, Droughts, and Fires


- How to assess risk of these disasters?
- How to plan post-disaster impacts and response strategy?

<u>Flood rescue in San Juan del Río, Querétaro, Mexico</u> <u>October 2021. Photo; Municipal de San Juan del Río</u>

From NASA Earth observatory

<u>Red dots represent severe fires, which are intense in</u> <u>Mexico's south and in most parts of Central America.</u> <u>NASA</u>

Reliable observations of land and atmosphere are crucial for disaster risk and response assessment.

NASA's Applied Remote Sensing Training Program

Atmospheric and Land Parameters Relevant for Assessing Flood, Drought, and Wildfire Conditions

Observations Relevant for Flood, Drought, Wildfire

Flood

- Precipitation
- Soil Moisture
 - soil characteristics
- Terrain & Slope
- Landcover
 - e.g., vegetation, urban
- Drainage Capacity (for urban areas)

Drought

- Precipitation
- Soil Moisture
- Land Surface
 Temperatures
- Evapotranspiration

Wildfire

- Dry Vegetation
- Soil Moisture
- Atmospheric Conditions
 - Precipitation
 - Humidity
 - Lightning conditions

Observations Relevant for Flood, Drought, Wildfire

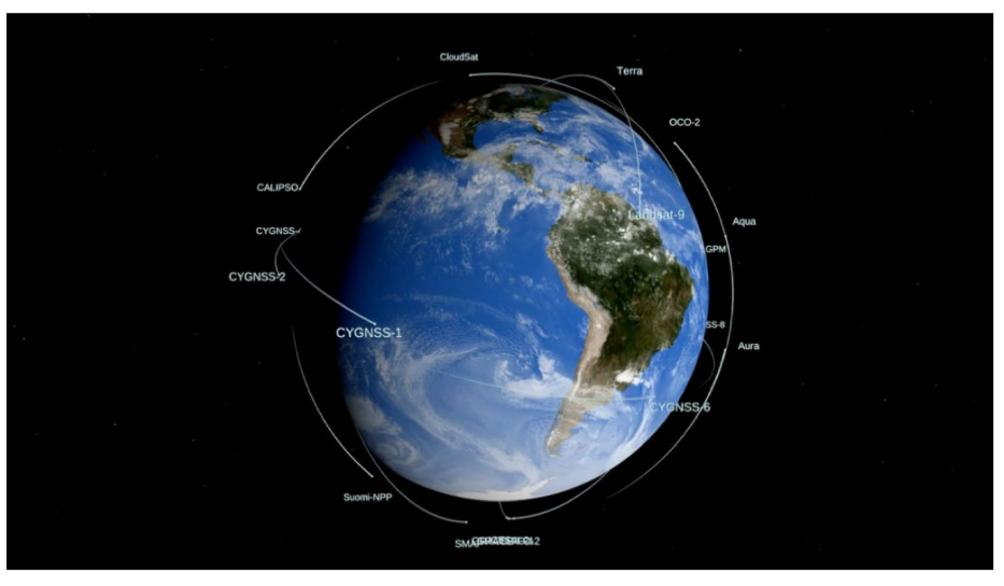
Flood

- Precipitation
- Soil Moisture
 - soil characteristics
- Terrain & Slope
- Landcover
 - e.g., vegetation, urban
- Drainage Capacity (for urban areas)

Drought

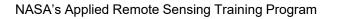
- Precipitation
- Soil Moisture
- Land Surface Temperatures
- Evapotranspiration

Wildfire


- Dry Vegetation
- Soil Moisture
- Atmospheric Conditions
 - Precipitation
 - Humidity
 - Lightning conditions

Satellite remote sensing is very useful to obtain these parameters.

NASA Earth Observing Satellites

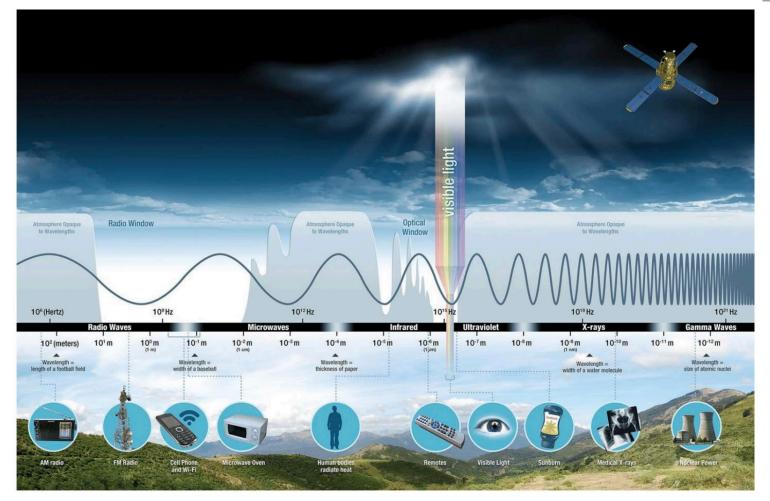

NASA Scientific Visualization Studio (SVS)

Satellites and Sensors Used in this Training

Parameters	Satellites	Sensors	Spectral Measurements	
Precipitation	TRMM & GPM	TMI, PR GMI, DPR	TMI: 10-85 GHz GMI: 10-183 GHz PR and DPR (Ku and Ka)	
Soil Moisture	SMAP	Microwave Radiometer	1.41 GHz	
Land Cover, Land Surface Temperatures Evapotranspiration	Landsat 8,9	OLI, OLI2 TIRS, TIRS2	Visible, Near IR, Middle IR, Thermal IR	
Land Cover, Land Surface Temperatures Evapotranspiration	Terra & Aqua	MODIS	Visible, Near IR, Middle IR, Thermal IR	
Day/Night Imagery	SNPP JPSS	VIIRS		

Satellites and Sensors Used in this Training

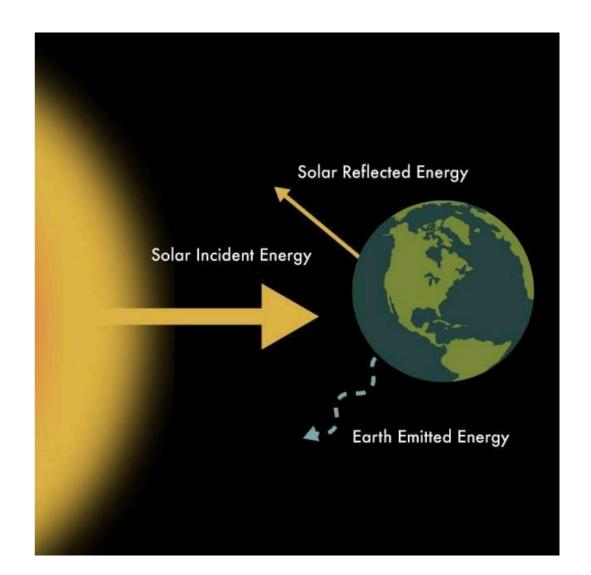
Parameters	Satellites	Sensors		Spectral Measurements	
Land Cover	Sentinel 1A and 1B	Synthetic Aperture Radar (SAR)		C-Band	
Terrain	Space Shuttle Endeavour	SRTM		C-Band	
DPR	Dual-frequency Precipitation Radar	SMAP		il Moisture Active Passive omi National Polar Partnership nthetic Aperture Radar	
GPM	Global Precipitation Measurements	SNPP SAR			
GMI IR	GPM Microwave Imager	SRTM	Shuttle Radar Topography Mission		
JPSS	Infrared Joint Polar Satellite System	TRMM	Tropical Rainfall Measuring Mission		
MODIS	MODerate-resolution Imaging Spectroradiometer	TMI	TRMM Microwave Imager		
OLI	Operational Land Imager	TIRS	Thermal Infrared Sensor		
PR	Precipitation Radar	VIIRS		Visible Infrared Imaging Radiometer Suite	


Brief Review of Remote Sensing Concepts

Satellite Sensors

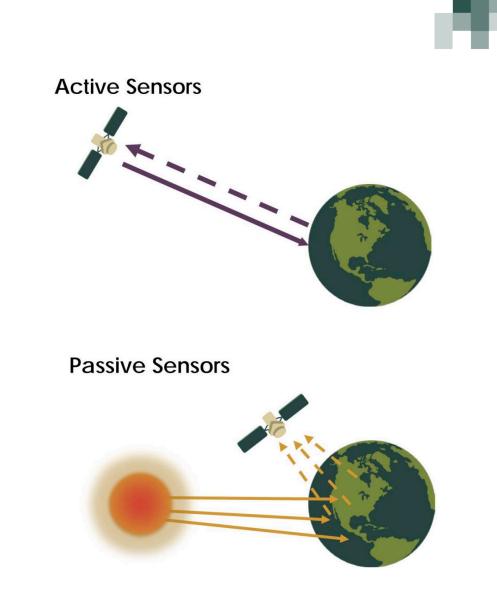
- Satellites carry one or multiple sensors or instruments.
- Sensors measure
 electromagnetic radiation
 - reflected solar radiation
 - emitted infrared and/or microwave
 - radiation by the earthatmosphere system

NASA's Applied Remote Sensing Training Program


Electromagnetic Spectrum

Satellite Sensors

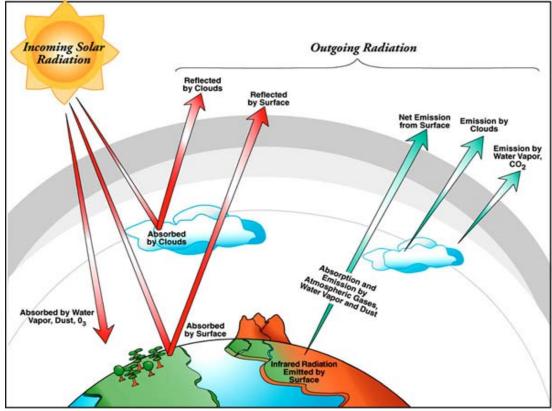
- Satellites carry one or multiple sensors or instruments.
- Sensors measure electromagnetic radiation
 - reflected solar radiation
 - emitted infrared and/or microwave
 - radiation by the earthatmosphere system



appliedsciences.nasa.gov/join-mission/training/english/arset-fundamentals-remote-sensing

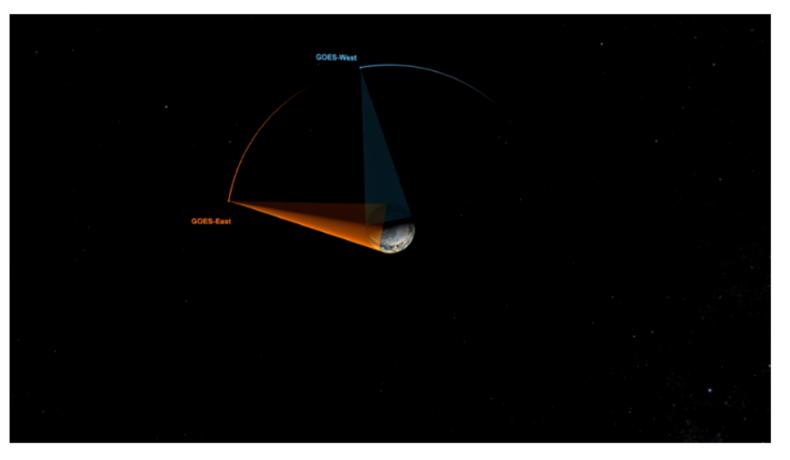
Satellite Sensors

- There are two types of sensors, active and passive.
- An active sensor has is own source of electromagnetic radiation that is sent to the earth system and backscattered radiation is then received by the sensor e.g., radar.
- A passive remote sensor measures radiant energy reflected or emitted by the Earthatmosphere system or changes in gravity from the Earth – e.g., radiometer, imager.


https://appliedsciences.nasa.gov/join-mission/training/english/arset-fundamentals-remote-sensing

Satellite Remote Sensing of Physical Parameters

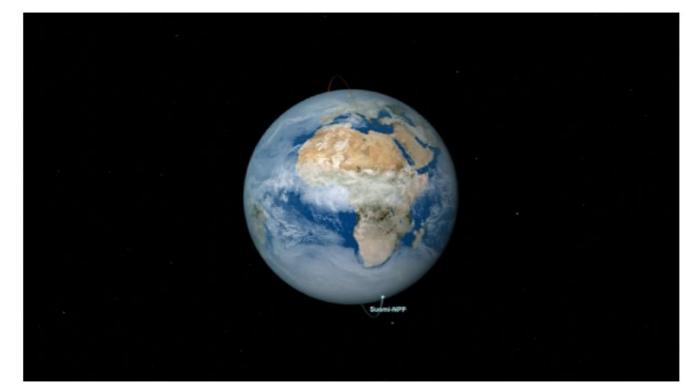
 Complex methodologies are developed using sensor measurements of radiation from the earth-atmosphere system, along with ground-based measurements and model-based data to obtain physical parameters such as temperature, precipitation, soil moisture, land cover.


https://appliedsciences.nasa.gov/join-mission/training/english/arset-fundamentals-remote-sensing

Satellite Orbits and Spatial and Temporal Coverage

Geostationary Orbit

- Typically orbit ~36,000 km over the equator with the same rotation period as Earth
- Multiple observations/day
- Limited spatial coverage observations are always of the same area


Credit: NASA Science and Visualization Studio (SVS)

Satellite Orbits and Spatial and Temporal Coverage

Polar or Sun-synchronous Orbit

- Global coverage.
- Varied measurement frequency (once per day to once per month).
- Satellites travel over the polar regions synchronous with the sun—this means that the satellite always visits the same spot at the same local time on Earth.

Credit: <u>NASA SVS</u>

Satellite Orbits and Spatial and Temporal Coverage

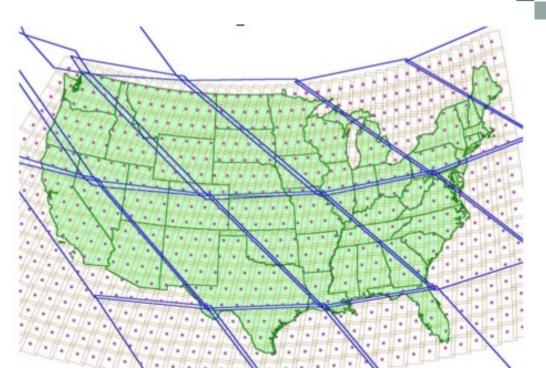
Low-inclination Orbit

- Orbit moving relative to Earth– can be polar or nonpolar
- Less frequent measurements
- Global or near-global spatial coverage

Credit: <u>NASA SVS</u>

Satellite Observations: Spatial Resolution

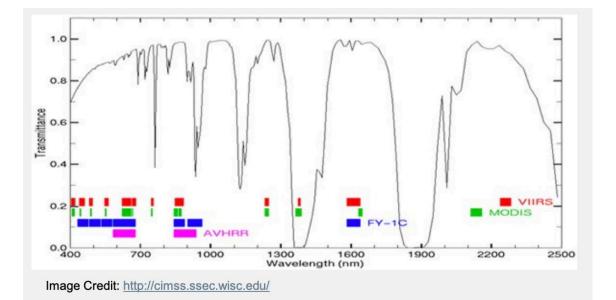
- Spatial Resolution depends upon satellite orbit configuration and sensor design.
- Different sensors have different resolutions.
- Signifies the smallest ground surface area that forms one picture element or pixel in the image.
- The higher the spatial resolution, the less area is covered by a single pixel.



Landsat 8 image of Reykjavik, Iceland, acquired July 7, 2019, illustrating different pixel resolutions Credit: <u>NASA Earth Observatory</u>.

Satellite Observations: Temporal Resolution

- Temporal resolution is the time elapsed between observations of the same point on Earth by a satellite—also called "revisit time."
- Depends on satellite/sensor capabilities, swath (area observed by a sensor as it moves in the orbit) overlap, and latitude
- Some satellites have greater temporal resolution because:
 - they can maneuver their sensors
 - they have increasing overlap at higher latitudes.


Orbital swath of MODIS (blue boxes) versus the orbital swath of the OLI aboard Landsat 8 (boxes with red dots). Due to its much wider imaging swath, MODIS provides global coverage every 1-2 days versus 16 days for the OLI. Red dots indicate the center point of each Landsat tile.

Credit: NASA Earth Observatory

Satellite Observations: Spectral Resolution

- Spectral resolution is the ability of a sensor to discern finer wavelengths, that is, having more and narrower bands.
- Sensors that we will use in this training are are multispectral, having 3–36 spectral bands in the wavelength range of visible (red, blue green), near-infrared (NIR), and microwave (MW).
- We will use spectral bands or spectral channels with wavelengths in units of nanometer (nm) or frequency in units of gigahertz (GHz).

Summary

- For assessing risk and impacts of floods, droughts, and fires, we will use parameters derived from:
 - GPM-multi satellite constellation (microwave radar and radiometers)
 - Landsat-8 and Landsat-9 (OLI, TIRS)
 - Aqua & Terra (MODIS)
 - NPP & JPSS (VIIRS)
 - SMAP (microwave radiometer)
 - Sentinel-1 (microwave radar)
- We will access the data available from Google Earth Engine (GEE) (<u>https://earthengine.google.com/</u>)

Summary

- We will use ancillary data from GEE:
 - Terrain (SRTM)
 - Night Light Imagery (VIIRS)
 - Winds (MERRA2, NASA atmospheric model)
 - Population Density
 - Impervious Surface

Next: Remote Sensing of Precipitation