

Earth Observations for Informing Disaster Risk and Response to Drought, Wildfire, and Flooding in Mexico Remote Sensing of Precipitation

May 8, 2023

Objectives:

- By the end of this presentation, you will learn concepts related to how precipitation data are derived from satellite observations, and learn about two state-of-the art precipitation data sets:
 - Integrated Multi-satellitE Retrievals for GPM (IMERG)
 - Climate Hazards group Infrared Precipitation with Stations (CHIRPS)

Outline

- Precipitation remote sensing
- NASA Precipitation Missions and Data
- IMERG Data Access and Visualization
- Overview of CHIRPS Data

Spectral Bands Used for Precipitation Remote Sensing

- Derived from:
 - reflected visible radiation (0.5 to 0.6 micrometer wavelength)
 - emitted infrared radiation (10 to 12 micrometer wavelength)
 - emitted and scattered microwave radiation (10 to 183 Ghz frequency or mm to cm wavelength)

Passive Remote Sensing: Inferred indirectly from emitted infrared (IR) radiation by clouds

NASA's Applied Remote Sensing Training Program

Passive Remote Sensing: Inferred indirectly from reflected solar visible (VIS) radiation by clouds

Image credit: UCAR COMET, comet.ucar.edu

Passive Remote Sensing: Estimated from microwave radiation emitted or scattered by precipitation particles

Electromagnetic Spectrum

- The lower frequencies, referred to as "emissions channels," measure precipitation mainly from energy emitted by raindrops (37 GHz).
- The higher frequencies, or "scattering channels," gather energy scattered by ice particles above the freezing level (85 GHz).

Image credit: UCAR COMET, comet.ucar.edu

Active Remote Sensing: Estimated from back-scattered microwave radiation transmitted by radars

Active Instruments emit their own signal and the sensor measures what is reflected back. Sonar and radar are examples of active sensors.

Image credit: Paul Messina, Hunter College

Active Remote Sensing

Source: Instrument pulse, Needs power to operate

- NASA Satellites TRMM and GPM use K-band radar.
- K-band generally has a frequency range within Ku (12–18 GHz) and Ka (27–40 GHz).

NASA Precipitation Missions and Data

GPM (Current) and TRMM (Past)

http://pmm.nasa.gov/

- Dedicated missions to measure rainfall from active and passive microwave observations.
- Collaborative missions between NASA and Japanese Space Agency (JAXA).
- TRMM was and GPM is in lowinclination, non-polar orbit.
- TRMM: November 1997 to April 2015
- GPM: February 2014 to present
- Combined, TRMM and GPM provide 20+ years of precipitation data.

- TRMM measurements were limited to the tropics (35° north/south latitude).
- GPM measurements span middle and high latitudes (65° north/south latitude).

TRMM and GPM Sensors

https://gpm.nasa.gov/category/mission-affiliation/pmm

TRMM Sensors:

- TRMM Microwave Imager (TMI)
- Precipitation Radar (PR)
- Visible and Infrared Scanner (VIRS)
- Lightening Imaging Sensor (LIS)
- Clouds and the Earth's Radiant Energy System (CERES)

- GPM Sensors:
 - GPM Microwave Imager (GMI)
 - Dual-frequency Precipitation Radar (DPR)

TRMM and GPM Precipitation Sensor Summary

TMI Swath

^{2008/05/31} image contains 16 orbits, orbit numbers from 60054 to 60069

- Channel Frequencies (GHz): TMI: 10.7, 19.4, 21.3, 37, 85.5 GMI: 10.6, 18.7, 23.8, 36.5, 89,166,183
- Swaths:
 TMI: 760 km (878 km after 8/2001)
 GMI: 885 km
- Spatial resolution: frequencydependent, varies from 4.3 to 32 km
- About 16 orbits per day, non-continuous spatial coverage

TRMM and GPM Precipitation Sensor Summary

NASA's Applied Remote Sensing Training Program

- Radar frequencies (GHz): PR: 13.6 (Ku band) DPR: 13.6 and 35.5 (Ku and Ka bands)
- Swaths (km): PR: 215 (247 after 8/2001) DPR: 245 (Ku band) & 120 (Ka band)
- Spatial resolution (km): PR: 4.5 (5 after 8/2001) DPR: 5.3
- Narrower swaths compared to TMI & GMI

Precipitation Algorithms for TRMM and GPM

http://pmm.nasa.gov/science/precipitation-algorithms

There are four major algorithms used to obtain precipitation estimates from GPM/TRMM observations:

- 1. Radar Algorithms
- 2. Radiometer Algorithms
- 3. Combined Radar + Radiometer Algorithms
- 4. Multi-Satellite Algorithms
 - TRMM and GPM Core Observatory are used to calibrate multiple national and international satellites constellation.

Multi-Satellite Algorithms for TRMM and GPM

http://pmm.nasa.gov/science/precipitation-algorithms

- TRMM & GPM core satellites are used to calibrate microwave observations from a constellation of national and international satellites.
- TRMM Multi-satellite
 Precipitation Analysis (TMPA)
- Integrated Multi-satellitE Retrievals for GPM (IMERG)
- IMERG is calibrated with TMPA to provide long-term precipitation record.

GPM Satellite Constellation

• Allows improved spatial and temporal coverage of precipitation data

IMERG

	IMERG
Spatial Resolution	0.1° x 0.1°
Spatial Coverage	Global, 60°S – 60°N (will be extended from pole to pole)
Temporal Resolution	30 minutes
Temporal Coverage	June 2000 – present

Huffman et al: https://gpm.nasa.gov/sites/default/files/document_files/IMERG_doc_190909.pdf

Integrated Multi-satellitE Retrievals for GPM (IMERG)

http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf

- Multiple runs accommodate different user requirements for latency and accuracy.
 - "Early" now 5 hours (flash flooding) will be 4 hours.
 - "Late" now 15 hours (crop forecasting) will be 12 hours.
 - "Final" 3 months (research data)
 - Value-added products at 3 hrs., 1, 3, and 7 days .tiff will be available
 - Initial release covers 60°N–60°S will be 90°N–90°S.

Information about Precipitation Measurement Mission

https://pmm.nasa.gov/

- Home of all information related to the precipitation missions
- Links to data documentation and access

IMERG Data Access and Visualization

Precipitation Data Access Tools

ΤοοΙ	Data & Format	Features
PPS/STORM http://storm.pps.eosdis.nas a.gov/	 3-hr Rain Rate (TRMM, GPM, IMERG) HDF, PNG 	 Orbital and Gridded Data Search Spatial/Temporal Subsetting Individual Data and FTP Batch Download Images and Interactive Data Viewer
Giovanni <u>http://giovanni.gsfc.</u> <u>nasa.gov/</u>	 3-hr Rain Rate, Daily, Monthly Rain (TRMM, GPM, IMERG) NetCDF, GeoTIFF, PNG, KMZ, CSV (time series only) 	 Spatial/Temporal Subsetting Analysis: Time-averaged maps, animation, time series, scatter plots, map correlations, vertical profiles, time-averaged differences Visualization: Maps, time series, scatter plots, histograms Near Real-Time Rain Rate Access
NASA GES DISC https://disc.gsfc.nasa.gov/	 3-hr Rain Rate, Daily, Monthly Rain (TRMM, GPM, IMERG) NetCDF, GeoTIFF 	Spatial/Temporal SubsettingBulk download using wget or curl
Google Earth Engine	• 3-hr Rain Rate, Daily,	 Spatial/Temporal Subsetting Analysis: Time-averaged maps, animation, time

Data Visualization

https://pmm.nasa.gov/data-access/visualization

Data Visualization

Global Viewer

View the latest near-realtime <u>GPM IMERG</u> global precipitation datasets (30 minute, 1 day, 7 day) on an interactive 3D globe in your web browser.

STORM Event Viewer

View 2D GMI and 3D DPR data from the latest extreme weather events on an interactive 3D globe in your web browser.

(click here for mobile version)

Precipitation and Applications Viewer

View and download various precipitation and applications datasets from the past 60 days (30 minute, 1 day, 3 day, 7 day precipitation, floods nowcast, landslides nowcast). Download datasets in various popular formats (TIF, SHP, arcJSON, geoJSON, topoJSON) and learn how to directly access the data via the PMM Publisher API.

NASA Worldview

This tool from NASA's Earth Observing System Data and Information System (EOSDIS) provides the capability to interactively browse global, full-resolution satellite imagery and then download the underlying data, including data from the Global Precipitation Measurement Missions.

Data Access and Visualization: Google Earth Engine (GEE)

https://earthengine.google.com/

\leftrightarrow \rightarrow (C A developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_V06							
Earth Engine Data Catalog Q Search								
Home	View all datasets	Browse by tags	Landsat	MODIS	Sentinel	API Docs		

GPM: Global Precipitation Measurement (GPM) v6

*									
4	Datas	et Availab	ility						
		2000-06-0	1T00:00:00Z-	2023-04	-27T04:3	0:00			
2	Datas	et Provide	er						
i.		NASA GES	S DISC at NAS	A Goddai	rd Space	Flight C	enter		
	Earth	Engine Sr	ippet						
100		ee.Image	Collection('NASA/GI	PM_L3/IN	1ERG_V0	6") 🛽		
	Tags								
		climate	geophysical	gpm	imerg	jaxa	nasa	precipitation	weather
		half-hourly	ý						

Description Bands Terms of Use Citations DOIs

We will be using GEE for precipitation data analysis and visualization.

NASA's Applied Remote Sensing Training Program

Overview of CHIRPS Data

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)

https://www.chc.ucsb.edu/data/chirps

- Developed to support the United States Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET).
- Based on thermal IR derived, coldcloud based rainfall, calibrated with TRMM/GPM multi-satellite rainfall data.
- The satellite-derived rainfall is combined with interpolated rain gauge data and regional, stationbased climatological time series of rainfall to get final rainfall product.

Funk et al., 2015: The climate hazards infrared precipitation with stations a new environmental record for monitoring extremes. Sci Data 2, 150066 (2015). <u>https://doi.org/10.1038/sdata.2015.66</u>

Overview of CHIRPS process and validation Funk et al. (2015)

(a) CHIRPS production and application schema.

(**b**) Map showing the wettest three-month seasons based on climatology.

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)

https://www.chc.ucsb.edu/data/chirps

- Temporal coverage: 1981 to present
- Temporal resolution: six-hourly, daily, 5-day mean, monthly, seasonal aggregates
- Spatial coverage: global, 50°S 50°N
- Spatial resolution: 0.05° (~5 km)

Annual Mean Rainfall (2021)

CHIRPS Data Access

https://data.chc.ucsb.edu/products/CHIRPS-2.0/

Links to Access CHIRPS Data

https://data.chc.ucsb.edu/products/CHIRPS-2.0/

https://clim-engine-development.appspot.com/fewsNet

https://climateserv.servirglobal.net/

https://developers.google.com/earthengine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY

https://developers.google.com/earthengine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD

https://earlywarning.usgs.gov/fews/ewx/index.html

Direct Download

Index of /products/CHIRPS-2.0

Name	Last modified	Size Description
Parent Directory		-
2 .DS Store	2015-07-14 17:42	6.0K
2DS Store	2015-07-14 17:42	4.0K
<u>global 2-monthly EWX-2/</u>	2017-09-27 10:18	-
<u>global 3-monthly EWX-2/</u>	2017-09-27 10:18	-
<u>global dekad EWX-2/</u>	2017-09-27 09:59	-
<u>global monthly EWX-2/</u>	2017-09-27 10:16	-
EAC monthly/	2014-11-19 14:41	-
EAC monthly EWX/	2014-11-19 14:41	-
README-CHIRPS.txt	2015-04-24 15:05	8.5K
acknowledgement-Reconocimiente	<u>p.txt</u> 2018-08-15 13:45	1.0K
africa 2-monthly/	2017-10-26 16:48	-
africa 3-monthly/	2017-10-26 16:48	-
africa 6-hourly/	2020-05-01 14:49	-
africa daily/	2015-11-20 16:15	-
africa_dekad/	2014-11-19 14:37	-
africa monthly/	2016-02-03 17:13	-
africa_pentad/	2014-11-19 14:37	-
<u>camer-carib_dekad/</u>	2014-11-19 14:40	-
camer-carib monthly/	2014-11-19 14:40	-
camer-carib_pentad/	2014-11-19 14:40	-
<u>diagnostics/</u>	2019-08-22 10:40)-
C docs/	2015-02-12 14:49	-
global_2-monthly/	2014-11-19 14:42	-
global_2-monthly_EWX/	2016-03-16 19:49	(1)
global_3-monthly/	2014-11-19 14:42	
global_3-monthly_EWX/	2014-11-19 14:42	-
🛅 g <u>lobal_annual/</u>	2015-02-12 14:43	-
global_daily/	2021-06-08 07:04	-
global_dekad/	2015-02-10 11:51	¥*
global dekad EWX/	2015-04-09 09:07	· .
global_monthly/	2021-11-02 14:04	a u
global monthly EWX/	2014-11-19 14:44	-
global_pentad/	2021-11-02 13:44	-

CHIRPS Data Access, Analysis, and Visualization: Climate Engine

https://app.climateengine.org/climateEngine

We will be using **Earth Engine** and **Climate Engine** for CHIRPS data access and analysis.

Next: Demonstration of Precipitation Data Access, Analysis, and Visualization

Thank You!

NASA's Applied Remote Sensing Training Program