

## Evapotranspiration (ET)

For more information visit: <u>ARSET ET Webinar</u>

# What is Evapotranspiration (ET)?

- The sum of evaporation from the land surface plus transpiration from plants
- ET transfers water from land surface to the atmosphere in vapor form.
- Energy is required for ET to take place (for changing liquid water into vapor).







### Importance of ET

- ET is a critical component of the water and energy balance of climate-soil-vegetation interactions.
- Useful for:
  - Determining agricultural water consumption
  - Assessing drought conditions
  - Developing water budgets
  - Monitoring aquifer depletion
  - Monitoring crops and carbon budgets



# **Challenges in Measuring ET**

- ET depends on many variables:
  - Solar radiation at the surface
  - Land and air temperatures
  - Humidity
  - Surface winds
  - Soil conditions
  - Vegetation cover and types
  - Highly variable in space and time





### **Ground Measurements of ET**

Limitation:

• These are point measurements and cannot capture spatial variability adequately.





Eddy Flux Towers

Lysimeters



# Benefits of Estimating ET from Remote Sensing Data

Satellites provide relatively frequent and spatially continuous measurements of biophysical variables used in estimating ET at different spatial scales, including:

- Radiation
- Land surface temperatures
- Vegetation coverage and density
- Precipitation
- Soil moisture
- Weather and climate variables







| Satellite      | Sensors      | Parameters                                                                                                                                       |
|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Terra and Aqua | MODIS        | Normalized Difference<br>Vegetation Index (NDVI),<br>Leaf Area Index (LAI),<br>Albedo (fraction of<br>surface solar radiation<br>reflected back) |
| Landsat        | OLI and ETM+ | Spectral Reflectance<br>(Thermal band)                                                                                                           |



# **Estimation of ET**

ET can be derived primarily from:

- Surface Water Balance
  ET = Precipitation + Irrigation Runoff Ground Water + Vertical Water Transport
  ± Subsurface Flow ± Soil Water Content
- <sup>1</sup>Surface Energy Balance
  ET (Latent Heat Flux) = Net Surface Radiation Ground Heat Flux Sensible Heating Flux
- Meteorological and <sup>1</sup>Vegetation/Crop Data (Penman-Monteith Equation)
- ET Estimation by Land Surface Models
  - e.g., Global Land Data Assimilation System (GLDAS): <u>http://ldas.gsfc.nasa.gov</u>

### <sup>1</sup>Based on: OLI, MODIS, VIIRS



## ET Data Products based on Remote Sensing

- MOD16: MODIS Global Evapotranspiration Project
  <u>http://ntsg.umt.edu/project/mod16</u>
- METRIC: Mapping Evapotranspiration with high-Resolution and Internalized Calibration http://eeflux-level1.appspot.com
- GLDAS: Global Land Data Assimilation System
  <u>http://ldas.gsfc.nasa.gov/gldas/</u>

# **METRIC ET**

### http://eeflux-level1.appspot.com

- Landsat-based ET
- Spatial resolution: 30 m
- Temporal resolution: 16-day



ET Derived from Landsat-8 image on 6 August 2022

#### Land Cover





10

# MOD16A2 ET

MOD16A2.006: Terra Net Evapotranspiration 8-Day Global 500m 🛛 -

- MODIS-based ET
- We will use MODIS-based ET product Mod16A2, available from GEE
- Spatial resolution: 500 m
- Temporal resolution: 8-day







### Thank You!



NASA's Applied Remote Sensing Training Program