

Earth Observations for Informing Disaster Risk and Response to Drought, Wildfire, and Flooding in Mexico Active Fire Conditions

May 10, 2023

Several Satellite Instruments Observe Fire Detections

	MODIS	VIIRS	ABI		
Platform	Terra , Aqua	Suomi NPP, NOAA-20, NOAA-21	GOES 16, 17, 18		
Launched	Dec 1999, May 2002	Oct 2011, Nov 2017, Nov 2022	Nov 2016, Mar 2018, Mar 2022		
Swath	2,330 km	3,040 km			
Equator Crossing Time	10:30 am (des), 1:30 pm (asc)	1:30 pm (asc), 1:30 pm (asc)	Geostationary		
Spatial Resolution	250 m, 500 m, 1 km	375 m, 750 m	500 m, 1km, 2km		
Temporal Resolution	Global Coverage: 1-2 days	Global Coverage: Daily	Full Disk: 15 min CONUS: 5 min		
Spectral Coverage	36 bands (VIS, IR, NIR, MIR) Band 1-2: 250 m Band 3-7: 500 m Band 8-36: 1 km	22 bands (VIS, IR, NIR,MIR) I-Bands (1-4): 375 m M-Bands (1-16): 750 m Day/Night Band: 750 m	16 bands (VIS, IR, NIR, MIR) 500 m – 2 km		

Geostationary Observations of Active Fires

Active Fire Products

- The Thermal Anomalies/Active Fire products deliver actively burning locations in NRT at 2 km (ABI), 1 km (MODIS), or 375 m (VIIRS) resolution.
- Provides snapshots of active burning fires

Fire Detections NOAA-20 VIIRS 9/1/2022 – 9/31/2022

MODISMOD04A1 (Terra)
MYD04A1 (Aqua)VIIRSVNP14IMGTDL_NRT (SNPP)
VJ114IMGTDL_NRT (N20)ABIFDC

Sensors and Product Names

What are Thermal Anomalies?

- Significant increase in absolute radiance at \sim 4 µm and \sim 11 µm
 - Measured as Brightness Temperature (BT) (K)
- All algorithms are similar.
 - Cloud masks applied
 - Use other wavelength bands to filter out sun glint and coastal regions

VIIRS Fire Detections, NASA Worldview

Fire Radiative Power (FRP)

- Rate of emitted radiative energy by a fire
 - Usually expressed in units of power (W, MW, or J/s)
- Fire Radiative Energy (FRE)
 - Time integrated FRP, usually expressed as (J)
 - Correlation between FRE and fire emissions

VIIRS 375m Cumulative FRP for 2020

https://svs.gsfc.nasa.gov/4899

VIIRS Active Fires, Jan-Sep 2021

https://svs.gsfc.nasa.gov/4945

Active Fire Detection Algorithm

Classify Cloud and Water Pixels

- Use thresholds in brightness temperature (BT) and reflectance in particular bands
- Different thresholds for day and night

Active Fire Detection

- Use fixed or dynamic (moving window) thresholds to identify potential fire pixels
- Use

complementary data from other channels Are you sure it's a fire?

- Characterize
 background
- Check for bright fire-free targets (glint, coastal regions, deserts, cleared forests)

VIIRS Algorithm

Band	Wavelength Range			
4	3.55 – 3.93 µm	Fire Detection		
15	10.5 – 12.4 µm	Compared with I4 to separate active fire from background		
11	0.6 – 0.68 µm	Cloud		
12	0.846 – 0.885 µm	Sun glint Water		
13	1.58 – 1.64 µm	Discrimination		

Data Artifacts:

Pixel Saturation South Atlantic Magnetic Anomaly (SAMA)

Candidate Fire Pixel Identification

- $BT_4 > BT_{4S} \text{ OR } \Delta BT_{45} > 25K \text{ (daytime)}$
- BT4 > 295K OR \triangle BT45 > 10K (nighttime)

 $BT_{4S} = 501 \times 501$ background BT window $BT_{45} = BT_4 - BT_5$

Validation

• Error rate: 0 – 1.2% (China)

Schroeder et al., 2014

https://www.sciencedirect.com/science/article/pii/S0034425713004483

VIIRS – File Contents

https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/viirs-i-band-375-m-active-fire-data

Attribute	Description	
Latitude	Latitude	Center of nominal 375 m fire pixel
Longitude	Longitude	Center of nominal 375 m fire pixel
Bright_ti4	Brightness Temperature I-4	VIIRS I-4 channel brightness temperature of the fire pixel (K)
Scan	Along Scan Pixel Size	Actual pixel size
Track	Along Track Pixel Size	Actual pixel size
Acq_Date	Acquisition Date	Date of VIIRS acquisition
Acq_Time	Acquisition Time	Time of acquisition/overpass of the satellite (in UTC)
Satellite	Satellite	N= Suomi NPP, 1=NOAA-20
Confidence	Confidence	Low - Areas of sun glint and lower relative temperature anomaly Nominal - Free of potential sun glint contamination during the day and strong temperature anomaly in either day or nighttime data High - Day or nighttime saturated pixels
Version	Version (Collection and Source)	"1.0NRT" - Collection 1 NRT processing "1.0" - Collection 1 Standard processing
Bright_ti5	Brightness Temperature I-5	I-5 Channel brightness temperature of the fire pixel measured in Kelvin
FRP	Fire Radiative Power	FRP depicts the pixel-integrated fire radiative power in MW (megawatts).
DayNight	Day or Night	D= Daytime Fire, N= Nighttime Fire

MODIS Algorithm

Channel	Central Wavelength				
21,22	4 µm	Active fire detection			
31	Active fire detection 11 µm cloud masking, fores clearing rejection				
32	12 µm	Cloud masking			
1	0.65 µm	Sun glint and coastal false alarm rejection; cloud masking			
2	0.86 µm	Bright surface, sun glint, and coastal false alarm rejection; cloud masking			
7	2.1 µm	Sun glint and coastal false alarm rejection			

Potential Fire Pixel Identification

- 0.86 Reflectance < 0.35 (daytime only)
- BT4 > BT4*
- $BT4 BT11 > \Delta BT^*$

BT4* and Δ BT* are dynamic thresholds calculated using a ~301x30 moving window centered on the pixel of interest.

Validation

• Global Commission Error (false alarms) 1.2%

Giglio et al., 2016

https://www.sciencedirect.com/science/article/pii/S0034425716300827

NASA's Applied Remote Sensing Training Program

MODIS – File Contents

https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/mcd14dl-nrt

Attribute	Description					
Latitude, Longitude	Latitude, Longitude	Center of 1 km fire pixel				
Brightness	Brightness Temperature 21 (K)	Channel 21/22 brightness temperature of the fire pixel (K)				
Scan	Along Scan Pixel Size	Actual pixel size				
Track	Along Track Pixel Size	Actual pixel size				
Acq_Date	Acquisition Date	Data of MODIS acquisition				
Acq_Time	Acquisition Time	Time of acquisition/overpass of the satellite (in UTC)				
Satellite	Satellite	A = Aqua and T = Terra				
Confidence	Confidence (0-100%)	Confidence estimates range between 0 and 100% and are assigned one of the three fire classes (low- confidence fire, nominal-confidence fire, or high-confidence fire).				
Version	Version (Collection and Source)	Version identifies the collection and source of data processing, for example: "6.1URT" - Collection 6.1 Ultra Real-Time processing. "6.1NRT" - Collection 61 Near Real-Time processing. "6.1" - Collection 61 Standard processing.				
Bright_T31	Brightness Temperature 31 (K)	Channel 31 brightness temperature of the fire pixel (K)				
FRP	Fire Radiative Power	Pixel-integrated FRP in MW (megawatts)				
Туре*	Inferred Hot Spot Type	0 = Presumed Vegetation Fire, 1 = Active Volcano, 2 = Other Static Land Source, 3 = Offshore				
DayNight	Day or Night	D= Daytime fire, N= Nighttime fire				
NASA's App	NASA's Applied Remote Sensing Training Program					

ABI Algorithm

Channel	Central Wavelength	
2	0.64 µm	Cloud screening, surface albedo
7	3.9 µm	Hot spot location and characterization
14	11.2 µm	Hot spot location and characterization
15	12.3 µm	Cloud identification

Validation

High false alarm rate

Fire Pixel Identification

- Part I
 - Loop over all pixels to identify all possible fire pixels
- Part II
 - Threshold tests to refine fire pixel identification and Fire Classification

The GOES algorithm uses spectral, contextual, and temporal tests, the thresholds for which are dynamically determined.

ABI – File Contents

https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Fire.pdf

Attribute	Dimension						
Fire Mask Codes	Grid (xsize, ysize)	Codes indicating final disposition of pixels (including fire flags if so determined)					
Subpixel Fire Size	Grid (xsize, ysize)	Subpixel fire size for processed fires (codes 10 and This is set to -9 if the subpixel fire temperature is le	d 30) (km²) ss than 400 K at	the end of the algorithm.			
Subpixel Fire Temp	Grid (xsize, ysize)	Subpixel fire temperature for processed fires (cod This is set to -9 if the subpixel fire temperature is le	les 10 and 30) (K ss than 400 K at	() the end of the algorithm.			
Subpixel FRP	Grid (xsize, ysize)	Subpixel fire radiative power for processed fires (codes 10, 13, 14,	, 30, 33, and 34) (MW)			
Previous Fire Mask	ABI Full Disk Grid	ABI full disk mask of seconds since 1 January 2001	l when a fire wa	is last detected in that fixed grid pixel.			
QA Flags	Grid (xsize, ysize)	QA flags where 0 indicates a fire and nonzero indicates non-fire pixels (see table)					
		a. Number of fire categories	GOES-R ABI WF_ABBA FDCA QA Flages				
		es, gs b. Definition of each fire category c. Percent of pixels for each fire category d. Number of QA flag values e. Definition of each QA flag value f. Percent of retrievals with each QA flag value	QA Code	Fire Mask Code(s) and Definition			
Metadata	27 values,		0	10-15, 20-25, 30-35 [20-25 not used for ABI currently]: These are the			
Meldudu	12 strings			codes for fires, all are considered valid algorithm output.			
			1	100: Fire-free land pixel that was not otherwise screened out.			
		h. Total number of fires	2	200, 205, 210, 215, 220, 225, 230, 240, 245: The pixel failed opaque cloud tests			
			0, 40, 50, 60, 130, 150-153, 155: Pixel unusable due to unusable				
		3	surface type, sunglint, or being off the disk. Also includes reserved				
			mask values not including 20-25.				
		4	120-127, 160: Bad input data.				
	vasa s applied R	emore sensing Iraining Program	5	170, 180, 182, 185-188: A calculation in the algorithm failed.			

VIIRS Detects 3-4x More Fires Than MODIS

Daytime Active Fire Detections – 4/27/2022

MODIS - Aqua

VIIRS

One Fire, Multiple Views – May 10, 2022

MODIS - Terra

VIIRS

ABI

https://rammb.cira.colostate.edu/ramsdis/online/loop.asp?data_folder=loop_of_the_day/goesaining Program 16/2022051000000&number_of_images_to_display=400&loop_speed_ms=50

NASA's Applied Remote Sensing Training Program

Thermal Anomalies Algorithms

- Limitations:
 - False positives: small forest clearings (bare soil)
 - Large fire omissions due to thick smoke
 - Larger pixel size of MODIS and ABI can miss small fires
- MODIS Collection 6 (most recent) improves upon these errors.
 - Global commission error of 1.2%
 - Similar error for VIIRS

MODIS Fire Detections, NASA Worldview

Fire Information for Resource Management System (FIRMS)

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms

- Near real-time (NRT) active fire data within 3 hours of satellite overpass
 - Shorter latency for CONUS (~30 min)
- Global MODIS and VIIRS fire locations, and provisional geostationary observations
- Historical data available
- Available In:
 - Email alerts
 - Download shapefile, WMS, KML, or TXT
 - Visualization in Web Fire Mapper or Worldview
- Video Tutorial: <u>How to Use NASA's Fire Information</u> for Resource Management System (FIRMS)

Where to Obtain MODIS Fire Products

Archived Data

Land Process Distributed Active Archive (LPDAAC): <u>http://lpdaac.usgs.gov/</u>

NASA Earthdata: https://earthdata.nasa.gov/

Near Real Time (NRT)

Worldview: http://worldview.earthdata.nasa.gov

NASA's Applied Remote Sensing Training Program

Where to Obtain VIIRS Products

Worldview: <u>http://worldview.earthdata.nasa.gov</u>

VIIRS Active Fire

VIIRS Active Fire: <u>http://viirsfire.geog.umd.edu</u>

COMPREHENSIVE LARGE ARRAY-DATA STEWARDSHIP SYSTEM (CLASS) NOAA Comprehensive Large Array-Data Stewardship System (CLASS): <u>https://www.avl.class.noaa.gov/saa/products/welcome</u>

LAADS DAAC

Level-1 and Atmosphere Archive & Distribution System: <u>https://ladsweb.modaps.eosdis.nasa.gov/</u>

Where to Obtain ABI Products

AL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NOAA Comprehensive Large Array-Data Stewardship System (CLASS): <u>https://www.avl.class.noaa.gov/saa/products/welcome</u>

University of Wisconsin GOES Page: <u>http://cimss.ssec.wisc.edu/goes/goesdata.html</u>

References

- VIIRS Algorithm
 - Schroeder et al., 2014, Remote Sensing of Environment <u>https://www.sciencedirect.com/science/article/pii/S0034425713004483</u>
- VIIRS User Guide
 - <u>https://viirsland.gsfc.nasa.gov/PDF/VIIRS_activefire_User_Guide.pdf</u>
- VIIRS Algorithm Theoretical Basis Document (ATBD)
 - <u>https://viirsland.gsfc.nasa.gov/PDF/VIIRS_activefire_375m_ATBD.pdf</u>
- MODIS Collection 6 Algorithm
 - Giglio et al., 2016, Remote Sensing of Environment <u>https://www.sciencedirect.com/science/article/pii/S0034425716300827</u>
- MODIS User Guide
 - https://modis-fire.umd.edu/files/MODIS_C6_C6.1_Fire_User_Guide_1.0.pdf
- ABI ATBD
 - <u>https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Fire.pdf</u>
- ABI Fire Detection Fact Sheet (with links)
 - https://www.goes-r.gov/education/docs/fs_fire.pdf
- ABI and VIIRS ADP and AOD Documents
 - <u>https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/documents.php</u>

Earth Observations for Informing Disaster Risk and Response to Drought, Wildfire, and Flooding in Mexico Post-Fire Assessment

May 10, 2023

Post-Fire Impacts

- Fires are a part of the natural forest, grassland, and tundra environment.
- Fires have long-lasting impacts to surrounding human lives and infrastructure.
- Some of the major post-fire impacts on environment are:
 - Release of carbon dioxide and soot particles in the atmosphere, thereby influencing climate
 - Change in soil chemistry and reduction in soil fertility
 - Destruction of vegetation leading to increased runoff and soil erosion
 - Influence on nutrient cycling and flow
 - Destruction of ecosystems and wildlife

http://www.geog.leeds.ac.uk/courses/level3/geog3320/studentwork/groupd/positiveandnegative.html

Fire Intensity

- The amount of energy or heat release per unit time or area and encompasses several specific types of fire intensity measures.
- Byram (1959): "The rate of energy or heat release per unit time, per unit length of fire front, regardless of its depth."
- Fire intensity dictates burn severity.

Example scale of fire intensity. Image Credit: <u>NPS.gov, NIFC.gov, K. Crocker, D. A. DellaSala</u>

Burn Severity

- The effect of a fire on ecosystem properties, often defined by the degree of mortality of vegetation
- Degree to which a site has been altered or disrupted by fire; loosely, a product of fire intensity and residence time

Example of high severity burned area. Image Credit: USDA Forest Service Gen. Tech. Rep. RMRS-GTR-243. 2010

Remote Sensing Perspective: Burned Area and Burn Severity

Burned area uses imagery to assess the extent of impacts on vegetation for a particular fire event.

Burn severity compares burned area information to pre-fire imagery to assess relative magnitude of burn impacts.

Typical Vegetation Spectral Response

Spectral Response Curve of Typical Vegetation from 0.4 to 2.6 µm

Healthy Vegetation vs. Burned Areas

Exploiting Spectral Response Curves

Burned Area: Normalized Burn Ratio (NBR)

- Used to identify burned areas
- Compare pre- and post-burn to identify burn extent and severity

 $NBR = \frac{\left(NIR - SWIR\right)}{NIR + SWIR}$

Mendocino Complex Fires, 2018

Burn Severity: Differenced Normalized Burn Ratio (dNBR)

- Normalized Burn Ratio (NBR)
- Establishes extent of burned area before and after fire event

- Differenced Normalized Burn Ratio (dNBR)
- Provides a comparison of pre- and postfire conditions to determine severity
- dNBR = Pre-Fire NBR Post-Fire NBR

dNBR

NASA's Applied Remote Sensing Training Program

Tools for Post-Fire Mapping

Fire Information for Resource Management System (FIRMS)

- NASA FIRMS:
 - <u>https://firms2.modaps.eosdis.nas</u>
 <u>a.gov/</u>
- Data available globally
- MODIS Burned Area Product
- Also includes VIIRS and MODIS fire detection and active fire data
- Near Real-Time (NRT) data replaced with standard science-quality data as they become available (usually with a 2-3-month lag)
- Data Download:
 - <u>https://firms2.modaps.eosdis.nas</u>
 <u>a.gov/download/</u>

MODIS burned area displayed for Northern California displaying burned areas in August and September 2020. Image Credit: <u>FIRMS</u>

33

Global Wildfire Information System (GWIS): Burnt Area

Climate Engine

http://climateengine.org/

- Uses Google's Earth Engine for on-demand processing of satellite and climate data via web browser
- Time series and statistical summaries
- Downloadable results in GeoTIFF format and time series results as .csv or .xlsx format
- Share map or time series results with web URL links

Climate Engine

http://climateengine.org/

- Overcomes computational limitations of big data for use in real-time monitoring
- Fully customizable spatial and temporal analyses
- Comprehensive set of variables that provide early warning indicators of climate impacts such as drought, wildfire, and agricultural production

Google Earth Engine for Post-Fire Mapping

Applications of GEE for Land Management: Burn Severity

- Burn severity mapping completed in GEE manipulates pre-loaded Sentinel-2 or Landsat 8 data and uses the GEE platform as a means to quality control and filter data.
- Normalized Burn Ratio (NBR) and differenced NBR (dNBR) are calculated.
- Thresholding rates the severity of wildfire burning to complete a full burn severity assessment.
- Refer to the step-by-step <u>UN-SPIDER burn</u>
 <u>severity in GEE training</u>

Google Earth Engine

Example of burn severity mapping using Sentinel-2 data in Empedrado, Chile in February 2017. This map was produced using the UN-SPIDER Burn Severity with GEE script. Credit: <u>UN-SPIDER</u>

Lytton Creek Fire In GEE

For this exercise, we will:

- 1. Load the pre- and post-fire Landsat images
- 2. Calculate the Normalized Burn Ratio (NBR) for the pre- and post-fire images
- 3. Calculate the differenced NBR (dNBR) for the pre- and post-fire images
- 4. Classify the burn severity and add a legend
- 5. Calculate the burned area
- 6. Export the burned area statistics as a .csv

LYTTON CREEK FIRE CODE LINK:

https://code.earthengine.google.com/bf0e7325fd0c23ff828815adaa8f9eb0

Bolivian Fires of 2020 In GEE

- Most of this code was generated via the United Nations Office for Outer Space Affairs, UN-SPIDER Knowledge Portal.
- Please refer to this website for more information: <u>https://un-spider.org/advisory-</u> <u>support/recommended-practices/recommended-practice-burn-severity</u>

Bolivian Fires of 2020 In GEE

For this exercise we will:

- Select the study area
- 2. Select the date range
- 3. Select the satellite platform (Landsat 8 or Sentinel 2)
- Identify what the user selected in steps 1-3 4.
- 5. Apply a cloud and snow mask
- Mosaic and clip images to the study area 6.
- Calculate the NBR for the pre- and post-fire images
- 8. Calculate the dNBR
- 9. Add all the image layers to the map
- 10. Calculate burned area
- 11. Add a legend to the map
- 12. Export the dNBR image
- 13. Export the burned area statistics as a .csv

BOLIVIAN FIRES CODE LINK:

https://code.earthengine.google.com/25ade354b78d713f37ec8aa1b9c66952

Summary

- Fire impacts soil chemistry, watershed dynamics, vegetation extent and type, and many other features of the landscape.
- Remote sensing can be used to assess the burned area extent, burn severity, and vegetation regrowth.
- There are multiple tools for assessing post-fire landscapes, including:
 - LANDFIRE
 - FIRMS
 - MTBS
 - GWIS
 - AppEEARS
 - And GEE, which we have featured in this session

Resources

- Google Earth Engine Beginners Cookbook: <u>https://developers.google.com/earth-</u> engine/tutorials/community/beginners-cookbook
- LANDFIRE: <u>https://landfire.gov/</u>
- Fire Information Resources Management System (FIRMS): <u>https://firms2.modaps.eosdis.nasa.gov/</u>
- Monitoring Trends in Burn Severity (MTBS): <u>http://www.mtbs.gov/</u>
- MTBS Fire Mapping Tool: <u>https://www.mtbs.gov/qgis-fire-mapping-tool</u>
- Global Wildfire Information System (GWIS): <u>https://gwis.jrc.ec.europa.eu/</u>
- Canada's Record-Breaking Heatwave: <u>https://airs.jpl.nasa.gov/resources/228/nasas-airs-tracks-record-breaking-heat-wave-in-pacific-northwest/</u>
- CNN Article about the Lytton Fire: <u>https://www.cnn.com/2021/07/08/americas/canada-lytton-</u> wildfire-climate-change-indigenous-intl-cmd/index.html
- Earth Observatory Article about the Bolivian Fire outbreak: <u>https://earthobservatory.nasa.gov/images/147408/fierce-fires-in-bolivia</u>

Appendix

Smoke Monitoring from Space

Smoke Color and Texture in Satellite Images

Visible Smoke from Fires

NASA's Applied Remote Sensing Training Program

Selection of Spectral Bands for Smoke Detection

R = 0.66 μ m G = 0.55 μ m B = 0.47 μ m

Smoke Detection – Spectral Signature

https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_EPS_Aerosol_ADP_v1.5.pdf

Specific spectral responses of dust, smoke, clear, and cloudy parts of the atmosphere allow us to separate and classify different features in a satellite image.

How is Smoke/Dust Detected?

 Smoke/dust reduces the contrast between 412 nm and 440 nm as the absorption increases with the decreasing wavelength.

Absorbing Aerosol Index

AAI = -100[10g10(R412/R440) - log10(R'412/R'440)]

 Difference in particle size enables us to pickout the smoke by introducing the shortwave IR channel (2.25 µm).

Dust, Smoke Discrimination Index

 $\mathsf{DSDI} = -10[10g_{10}(\mathsf{R}_{412}/\mathsf{R}_{2250})]$

References:

1. Algorithm Theoretical Basis Document https://www.star.nesdis.noaa.gov/jpss/documents /ATBD/ATBD_EPS_Aerosol_ADP_v1.5.pdf

2. Zhang et al., 2018, J. of Applied Remote Sensing

NOAA's Aerosol Detection Product (ADP)

- Absorption Aerosol Index
- Dust, Smoke Discrimination Index
- 6 Type Flags: (1=Presence; 0=Absence)
 1. Volcanic Ash Flag
 2. Dust Flag
 - 3. Smoke Flag
 - 4. None/Unknown/Clear
 - 5. Cloud Flag
 - 6. Snow/Ice Flag
- Quality Flags

Low, medium, and high confidence for each type

File Example - JRR-ADP_v2r1_npp_s201911010742162_e201911010743404_c201911010834210.nc

Image: <u>https://www.star.nesdis.noaa.gov/jpss/mapper</u>

52

NOAA's Mapper - NPP, NOAA20, S5P

https://www.star.nesdis.noaa.gov/jpss/mapper

NOAA's Aerosol Watch

https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/

Smoke Monitoring Tools – Worldview

NRT Data & Image Access <u>https://worldview.earthdata.nasa.gov/</u>

- Visible Imagery (MODIS, VIIRS)
- Fire Detection (MODIS, VIIRS)
- Aerosol Optical Depth (MODIS 1, 3, 6, 10km, OMI, MISR)
- Aerosol Index (OMI)
- Day-Night Band (VIIRS)

NOAA's Hazard Mapping System

https://www.ospo.noaa.gov/Products/land/hms.html#maps

Aerosol Layer Altitude

Smoke Monitoring Tools – MISR Plume Height

https://misr.jpl.nasa.gov/get-data/misr-plume-height-project-2/

• Stereo height algorithm reports plume top heights and wind vectors.

GET DATA

MISR Plume Height Project 2

Access MISR Plume Height Project data here.

The MISR Plume Height Project is a publicly available database of wildfire smoke plume heights generated by the MISR INteractive eXplorer (MINX) software, produced over many years thanks to the contributions of many MISR science team members and student interns. As of this writing, the database includes all digitizable smoke plumes observed by MISR around the world for 2008 – 2011 as well as the summers (June, July, August) of 2017 and 2018. These data have been used to validate plume rise in models and other satellite-derived datasets, as well as to study the dynamics of individual fires and climatology of fire in the environment.

Please note MISR Plume Height Project data is now accessed via the MISR Enhanced Research and Lookup Interface (MERLIN), hosted by the NASA Atmospheric Science Data Center. This online tool provides new search, visualization and analysis capabilities beyond those that were available through the old MISR interface. Users are also able to download individual plume files as before.

Please visit https://l0dup05.larc.nasa.gov/merlin/merlin# to access the MERLIN tool.

A user guide for MERLIN is also available at https://asdc.larc.nasa.gov/documents/misr/guide/MERLIN_User_Guide.pdf.

MERLIN visualization tool

TROPOMI Aerosol Layer Height

https://disc.gsfc.nasa.gov/datasets/S5P_L2__AER_LH_HiR_2/summary?keywords=S5P_L2__AER_LH_HiR_2

- Cloud-free conditions
 - Dust, smoke, volcanic ash
- Optimal Estimation algorithm assumes a single layer (50 hPa) with constant extinction and scattering properties
 - Assumption impacts AOD more than height retrieval
- Reports the height as the mid-pressure and mid-altitude of the layer at pixel resolution: 5.5 km x 3.5 km
- Also reports the AOD at 760 nm and error estimates
- Tends to be biased low over bright surfaces

Product Wards Prod DAGL CESS DISC A ¹ Feedback Cloud Migration Help * Or Login Image Addressions SSP_12_AER_LH_H Image Addressions Of My Destribute Image Addressions SSP Standersions SSP_12_AER_LH_H Image Addressions Image Addressions <		1. 0.1.0								
Add 1 Cloud Migration Help < Item of the provide structure Image: Data Contentions Sep_12_AER_LH_H Image: Cloud Cloud Structure Image: Cloud S		nd a DAAC +								
■ Data Collections SSP_L2_AER_LH_H ■ O O	JES DISC					<u>^</u> 4	Feedback	Cloud Migration	Help 🔻	🔹 Login
Interpretent Composition, Water & Energy Cycles and Climate Variability Interpretent NASA's Torra, Aqua, and Aura Data Continuity Workshop RFI Back to search results Copenicus Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Starting from August 6th in 2019, Sentinel-SP TROPOMI along-track high spatial resolution (-5.5km at natior) has been implemented. Image: Court Enabled Image: Court Enabled Image: View Full-size image Product Enabled Product Summary Variables Data Citation References Data Citation Product Summary Variables Data Citation References Data Citation Documentation References Data Citation Documentation References Data Citation Documentation Accores Data Citation Documentation References Data Citation Documentation References Data Calendar Image: Court Full READ-ME References Data Calendar READ-ME READ-ME References Data Calendar	S5P_L2	e_aer_lh_h 🛗 🛱	Q							CMy Dashboard
Important Services Data Catalon Product Summary Variables Description Product Summary Variables Description Product Summary Variables Description Product Summary Variables Description Product Summary Variables Data Catalon Recomment Recomment References Data Catalon Product Summary Variables Data Catalon References Data Catalon Recommary Variables Data Catalon References Data Catelon Image: Stating Form Proceeding For Stating Form Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Sentine-SP is the First Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide measurements of 2020n, PK2, SC22, CH4, CO, termalous Provide Provide Provide	tmospheric Composition, W	ater & Energy Cycles	and <u>Clim</u>	<u>ate Variability</u>						
Back to search results Copenicus Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (SSP_L2_AER_LH_HIR) Image: Control of the sentine of the sentin sentine of the sentine of the sentin sentin	nnouncement: NASA's Te	rra, Aqua, and Aura [ata Cor	ntinuity Worksho	op RFI	_				
Cogenerous Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_Har) Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_Har) Starting from August 6th in 2019, Sentinel-SP TROPOMI along-track high spatial resolution (-5.5km at natior) has been implemented. Crotata before August 6th in 2019, Sentinel-SP TROPOMI along-track high spatial resolution (-5.5km at natior) has been implemented. Crotata before August 6th in 2019, Sentinel-SP TroSPOMI along-track high spatial resolution (-5.5km at natior) has been implemented. Crotata before August 6th of 2019, please check SSP_L2_AER_LH_1 data collection. The Operational Sentinel-SP restinels, and its is a joint inflative between the Kingdom of the Netherlands and the ESA. The sole payload on Sentinel-SP is the first proSpherie Monthing Instrument pectrometer, covering the wavelength of ultraviolet-Visible (UV-VIS, 270m to 495mm), near Inflared (VIR, 370m to 775mm), and shortwave inflared (WIR, 2300m to 495mm), near Inflared (VIR, 370m to 755mm), and shortwave inflared (WIR, 2300m to 495mm), near Inflared (VIR, 370m to 755mm), and shortwave inflared (WIR, 2300m to 495mm), near Inflared (VIR, 370m to 755mm), and shortwave inflared (WIR, 2300m to 495mm), near Inflared (VIR, 370m to 755mm), and shortwave inflared (WIR, 2300m to 495mm), near Inflared (VIR, 370m to 755mm), and shortwave inflared (WIR, 2300m, 2350m), Central-SP is the first 100m to 2500m, NO2, 502, CH4, CO, brandehyde, aerosols and cloud at high spatial, temporal and spectral resolutiomore Product Summary Variables Data Clatation Documentation References Data Calendar ERAD-HK: READ-HK: README Document ALGORTHM THEORETICAL BASIS DOCUMENT (ATBE): Algorithm Theoretical Basis Document ACGORTHW THEORETICAL BASIS DOCUMENT (ATBE): Algorithm Theoretical Basis Document PROJECT HOME PAGE: ESA Copernicus Sentinal SP Home Page PROJECT HOME PAGE: ESA Copernicus Sentinal SP Home Page PROJECT HISTORY: SSP TROPOMI blat Callection Summary E	Back to search results									
Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Aerosol Layer Height 1-Orbit L2 5.5km x 3.5km (S5P_L2_AER_LH_HIR) Image: Sentinel-SP TROPOMI Data Deciment Image: Sentinel-SP TROPOMI Data Deciment 1 Image: Sentinel-SP TROPOMI Data Data Clateron Product Summary Variables Data Clateron Image: Sentinel-SP TROPOMI Data Collection Summary Product Summary Variables Data Clateron READ-ME READ-ME Readment ALGORITH	Conemicus Sentinel 5 Precursor									
Contributed of TreOf other Activate this register FOOR L2 Journal A South (Contribute Contribute Contrelevence Contribute Contribute Contribute Contribute Contribute	Sentinel-5P TROPON	Al Aerosol Laver He	ight 1-	Orbit I 2 5 5km	x 3.5km (S5	D 1 2		HIR)		
Product Summary Variables Data Citation References Data Calendar Product Summary Variables Data Citation References		in Acrosof Edyci Hit	igni i	OIDIT EZ O.OKIN	1 X 0.0111 (00	·	_/\CI_CI_			
Cloud Enabled Cloud	Agence balance of PERMA Associations and Logic Trade Trades (Second As, 1997)	Starting from August 6th has been implemented. For data before August 6	in 2019, S th of 2019	Sentinel-5P TROPON 9, please check S5P_	/II along-track high _L2AER_LH_1 c	spatial re lata colle	esolution (~5.5kr ction.	n at nadir)	Data Acc	ess
Agency's (ESA) new mission family - Sertinels, and it is a joint initiative between the Kingdom of the Metherank's and the ESA. The sole payload on Sentinels PS is the TRO-Opspheric Monitoring Instrument (TRO-PCM), which is a nair-viewing 108 degree Field-d/New push-broom grating hyperspectral getoremeter, covering the wavelengthe (ULVM), 270m to 495mm), near infrared (NIR, 675m to 775mm), and shortwave infrared (SWIR, 2305mm-2385mm). Sentinel-SP is the first of the Amospheric Composition Sentinels and is expected to provide measurements of ozone, NO2, SO2, CH4, CO, formaldehyde, aerosois and doud at high spatial, temporal and spectral resolutiomore Product Summary Variables Data Citation Documentation References Data Calendar READ-ME: READ-ME: READ-ME: References Data Calendar READ-ME: READ-ME: READ-ME: SSA Copennicus Sentinal Sentinal SP Home Page PRODUCT HISTORY: SSP TROPOMI Data Collection Summary For further information or assistance click Teechack' (upper fight) or email the Help Desk at: csfc-dt-help-disc@mail nasa gov		The Copernicus Sentine	-5 Precurs	sor (Sentinel-5P or S	5P) satellite missio	n is one	of the European	Space	Online Arc	iive
Cloud Enabled (TROPCML), which is a nadi-viewing 108 degree Field-Of-Wee yush-broom grafting hypespectral spectrometer, covering the wavelength of ultravide/subject (UV-VIS, 270m to 495mm), near infrared (NIR, 675m to 775mn), and shortwave infrared (SWIR, 2305mm-2385mm). Sentinel-SP is the first of the Amospheric Composition Sentinels and is expected to provide measurements of ozone, NO2, 502, CH4, CO, formaldehyde, aerosols and cloud at high spatial, temporal and spectral resolutiomore Product Summary Variables Data Citation Documentation References Data Calendar READ-ME: READ-ME: READ-ME: References Data Calendar READ-ME: READ-ME: READ-ME: Salo Document ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): Algorithm Theoretical Basis Document PRODUCT HISTORY: SP TROPOMI Data Collection Summary For further information or assistance click Teestback' (upper right) or email the Help Desk at: osfo-di-help-disc@mail nasa ory	Annal Land Angle Car	Agency's (ESA) new mis Netherlands and the ES/	sion family . The sole	y - Sentinels, and it is e payload on Sentine	s a joint initiative be al-5P is the TROPC	etween th Ospheric	e Kingdom of th Monitoring Instru	e iment	Earthdata Si	earch
Image: Composition Sentines and sequences of the first of the fir	Cloud Enabled	(TROPOMI), which is a r spectrometer, covering the	adir-viewi	ing 108 degree Field- outh of ultraviolet-visi	-of-View push-broc	m gratin m to 495	g hyperspectral	sd (NIR	OPENDA	∙P
Amosphere Composition Sentines and is expected to provide measurements of ozone, NO2, SO2, CH4, CO, formaldehyde, aerosols and cloud at high spatial, temporal and spectral resolutiomore Product Summary Variables Data Citation Documentation References Data Calendar READ-ME: README Document ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): Algorithm Theoretical Basis Document PROJECT HONDER PAGE: ESA Copenicus Sentinal SP Home Page PRODUCT HISTORY: SSP TROPOMI Data Collection Summary For further information or assistance click Teedback' (upper fight) or email the Help Desk at: osfo-db-help-disc/@mail.nasa.gov	C View Full-size Image	675nm to 775nm), and s	nortwave i	infrared (SWIR, 2305	5nm-2385nm). Sen	tinel-5P i	s the first of the		📩 Subset / G	Set Data
Product Summary Variables Data Citation Documentation References Data Calendar READ-ME: READ-ME: README Document ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): Algorithm Theoretical Basis Document PROJECT HOME PAGE: ESA Copenicus Sentinal SP Home Page PRODUCT HISTORY: SSP TROPOMI Data Collection Summary For further information or assistance click Teedback (upper fight) or email the Help Desk at: osf-cli-help-disc@mail nasa.ovy		Atmospheric Compositio formaldehyde, aerosols :	n Sentinel Ind cloud	is and is expected to at high spatial, tempo	provide measurem oral and spectral re	ents of c	zone, NO2, SO2 more	2, CH4, CO,		
Product Summary Variables Data Citation Documentation References Data Calendar READ-ME: README Document ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): Algorithm Theoretical Basis Document PROJECT HOME PAGE: ESA Copernicus Sentinal 5P Home Page PRODUCT HISTORY: SSP TROPOMI Data Collection Summary For further Information or assistance dick Teedback (upper fight) or email the Help Desk at: opfic-dbelp-disc@mail.nasa.gov										
Product Summary Variables Data Citation Documentation References Data Calendar READ-ME: README Document ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): Algorithm Theoretical Basis Document PROJECT HOME PAGE: ESA Copernicus Sentinal 5P Home Page PROJUCT HISTORY: SSP TROPOMI Data Collection Summary For further information or assistance dick Treadback (upper right) or email the Help Desk at: opfic-di-help-disc/@mail.nasa.gov										
Product Summary Variables Data Citation Documentation References Data Calendar READ-ME: READ-ME: READ-ME: READ-ME: READ-ME: AUG0RITH M THEORETICAL BASIS DOCUMENT (ATBD): Augorithm Theoretical Basis Document PROJECT HOME PAGE: ESA Copernicus Sentinal 5P Home Page PROJUCT HISTORY: SSP TROPOMI Data Collection Summary For further Information or assistance dick Theofback (upper finit) or email the Help Desk at: opfic-libet-disc/8mail.nasa.gov										
READ-ME: READ-ME: READ-ME Document ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): Algorithm Theoretical Basis Document PROJECT HOME PAGE: ESA Copernicus Sentinal 5P Home Page PROJUCT HISTORY: S5P TROPOMI Data Collection Summary For further Information or assistance dick Teedback (upper fight) or email the Help Desk at: osfo-di-help-disc@mail nasa.gov	Product Summary Variables	B Data Citation Docu	nentation	References Da	ata Calendar					
ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): Algorithm Theoretical Basis Document PROJECT HOME PAGE: ESA Copernicus Sentinal 5P Home Page PRODUCT HISTORY: S5P TROPOMI Data Collection Summary For further information or assistance dick "Feedback" (upper fight) or email the Help Desk at: osfordi-help-disc@mail.nasa.gov		READ	ME: R	EADME Document						
PROJECT HOME PAGE: ESA Copernicus Sentinal 5P Home Page PRODUCT HISTORY: S5P TROPOMI Data Collection Summary For further information or assistance dick 'Feedback' (upper fight) or email the Help Desk at: osfo-di-help-disc/@mail.nasa.gov	ALGORITHM THEORETICA	AL BASIS DOCUMENT (AT	BD): Al	Igorithm Theoretical E	Basis Document					
PRODUCT HISTORY: S6P TROPOMI Data Collection Summary		PROJECT HOME P	GE: E	SA Copernicus Sentir	nal 5P Home Page					
For further information or assistance click 'Feedback' (unper right) or email the Helo Desk at: cstc-di-helo-disc@mail.nasa.gov		PRODUCT HISTO	DRY: S	5P TROPOMI Data C	Collection Summar	/				
	For further information or a	assistance click 'Feedback'	unner rid	ht) or email the Help	Desk at: osfo-di-be	elp_disc/@	mail nasa nov			

ATBD: https://sentinel.esa.int/documents/ 247904/2476257/Sentinel-5P-TROPOMI-ATBD-Aerosol-Height

MAIAC Smoke Injection Height

https://lpdaac.usgs.gov/products/mcd19a2v061/

- Derive smoke plume heights using thermal contrast of smoke for pixels:
 - AOD at 470 nm must be > 0.8
 - Must have smoke-free ground brightness temperature
 - Brightness temperature difference between the ground and smoke must be > 0
- Limitations: Dissipating smoke, large areas of thick smoke where background can't be characterized, and small fires
- Thermal technique represents an effective height
- Good agreement with MISR MINX, ~450m lower on average, ~200m low with respect to LiDAR (CALIOP)

Lyapustin et al., 2020, IEEE https://ieeexplore.ieee.org/document/8834856 MAIAC User Guide: https://lpdaac.usgs.gov/documents/1500/MCD 19_User_Guide_V61.pdf

