

Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling Part 1: Development of Regional Exposure Data with Earth Observations

Charles Huyck (ImageCat), Georgiana Esquivias (ImageCat), & Michael Eguchi (ImageCat)

October 03, 2023

About ARSET

About ARSET

- ARSET provides accessible, relevant, and cost-free training on remote sensing satellites, sensors, methods, and tools.
- Trainings include a variety of applications of satellite data and are tailored to audiences with a variety of experience levels.

ECOLOGICAL CONSERVATION

About ARSET Trainings

- Online or in-person
- Live and instructor-led or asynchronous and self-paced
- Cost-free
- Bilingual and multilingual options
- Only use open-source software and data
- Accommodate differing levels of expertise
- Visit the <u>ARSET website</u> to learn more.

Credit: Scott Pena

NASA ARSET - Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Why is Climate Risk Assessment Important?

- Even with drastic reduction in carbon emissions, short and medium-term impacts are inevitable
- Climate change impacts and risks are becoming increasingly complex and more difficult to manage (IPCC AR6, 2022).
- Climate change impacts on human infrastructure are not well understood and vary drastically by location
- Understanding community-specific risks to climate change is critical to evaluating adaptation strategies

"You can't stop the waves, but you can learn to surf." - Jon Kabat-Zinn

Training Learning Objectives

By the end of this training, participants will be able to:

- Recognize what building vulnerability is and why it is important for risk modeling
- Identify the core elements of natural hazard risk modeling and asset loss estimation
- Identify fundamental approaches for developing building-exposure models using Earth Observation data and tools
- Apply a basic procedure to model built infrastructure exposure and vulnerability characteristics from Earth Observation data
- Evaluate building-specific exposure data sets to identify key components for fit, validity, consistency and rectify bias
- Evaluate the appropriate use of modeled building exposure data to a given community
- Apply strategies to identify and address equity and bias considerations
- Apply approaches to validate building data with imagery for regional datasets
- Document your exposure development process through metadata so that others can
 understand the process used, the limitations, and how to update if necessary

Prerequisites

- <u>Fundamentals of Remote Sensing</u>
- Basic understanding of disaster risk management

Review of Prior Knowledge

- Climate change science tells us about the regional climate
- Hazard specialists tell us about the hazards (flooding, drought, hail, tornados)
- GIS and EO give us what is what is where (exposure)
- Engineers tell us about the susceptivity to damage (vulnerability)
- Together-these give us risk (likelihood of impact)
- GIS is critical!
 - GIS provides the digital glue between disciplines
 - Evaluating new sensors, technologies, and datasets (e.g., OSM, Lidar, drones)
 - Understanding and communicating key GIS concepts and limitations
 - Fusing, harmonizing, and assessing quality of multi-modal base data

Training Outline

Homework

Opens October 10 – Due October 24 – Posted on Training Webpage

A certificate of completion will be awarded to those who attend all live sessions and complete the homework assignment before the given due date.

Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling Part 1: Development of Regional Exposure Data with Earth Observations

Part 1 Objectives

By the end of Part 1, participants will be able to:

- Recognize what building vulnerability is and why it is important for risk modeling
- Identify the core elements of natural hazard risk modeling and asset loss estimation
- Identify fundamental approaches for developing building-exposure models using Earth Observation data and tools

How to Ask Questions

- Please put your questions in the Questions box and we will address them at the end of the webinar.
- Feel free to enter your questions as we go. We will try to get to all of the questions during the Q&A session after the webinar.
- The remainder of the questions will be answered in the Q&A document, which will be posted to the training website about a week after the training.

Part 1 – Trainers

Charles Huyck Executive Vice President ImageCat

Georgiana Esquivias

Senior Project Analyst ImageCat

Michael Eguchi Project Engineer ImageCat

What is Exposure Data and How is it Used in the Loss Estimation Process?

What is Exposure Data?

Risk Assessment: Exposure

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Loss Estimation and Risk Modeling for Disaster Risk Reduction (DRR)

- Before an event What might happen if ...?
- During an event Where is this going? What should we do?
- After an event What just happened? Should we ask international help? Where is the most damage? Where are people without food and shelter?
- On average Where should we build stronger, higher, or farther away? Where should we retrofit, acquire property, or replace facilities? What should be insured? (Insurers – how much should that cost?)

Terms and Meanings in CCA and DRR: Commonalities and Differences

CCA and DRR, OECD

DRR & CCA – Different terminology

- **Disaster Risk Reduction (DRR):** Concept and practice of reducing disaster risks through systematic efforts to analyze and reduce the causal factors of disasters. DRR is aimed at preventing new and reducing existing disaster risk, which contributes to strengthening resilience and therefore to the achievement of sustainable development (UNDRR).
- **Mitigation**: The lessening or minimizing of the adverse impacts of a hazardous event. Mitigation measures include engineering techniques and hazard-resistant construction as well as improved environmental and social policies and public awareness.
- **Vulnerability**: The conditions determined by physical, social, economic and environmental factors or processes which increase the susceptibility of an individual, a community, assets or systems to the impacts of hazards.

- Climate Change Adaptation (CCA): Humandriven adjustments in ecological, social or economic systems or policy processes, in response to actual or expected climate stimuli and their effects or impacts (UNFCCC).
- **Mitigation**: In climate change policy, "mitigation" is defined differently, and is the term used for the reduction of greenhouse gas emissions that are the source of climate change.
- Vulnerability: The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude and rate of climate variation to which a system is exposed, its sensitivity and its adaptive capacity.

UNFCCC Glossary

Risk... Confluence of Hazard, Vulnerability, and Exposure

Hazard

- Where? Extension
- How strong? Intensity
- When? Forecast, return period
- Duration?

Disclame: This map is intended as a planning level tool to ilustrate the potential for costal il fooding as sea levels itse and do not represent the exlocation or depline of fooding. These maps are based on model outputs and do not account for all the complex and dynamic costal processes or full conditions. Data sources City of Long Beach, CallTrans, CoSMoS. Results: AECOM, 2017.

Building Vulnerability to Different Hazards

HIND CAN SLIDE

Wind

三

HIND FORCE DOUBLES

LIFT

PUSH

HUD CAU OVERTURH

POOF TO HALL FLOOR TO WALL

FLOOP TO FOUNDATION

......

HIND CAN

UPLIPT CHAIN KEEPS BUILDING IN PLACE

LIFT

分

WIND FORCE ON BUILDING EXTERIOR

Building vulnerability to wind diagram

Building vulnerability to floods diagram

Risk Modelling

Types of Risk Analysis

Deterministic or "Scenario"

100 80 Loss level (%) 60 Probable Loss 40 20 50 100 500 1000 5000 10000 Return Interval (years)

Probable Loss Curve

Probabilistic

Sustainable Development and Disaster Risk Reduction

SUSTAINABLE GOALS 17 GOALS TO TRANSFORM OUR WORLD

SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION 2015-2030

1 POVERTY	2 ZERO HUNGER	3 GOOD HEALTH AND WELL-BEING	4 QUALITY EDUCATION	5 GENDER EQUALITY	6 CLEAN WATER AND SANITATION		Reduce	Increase
7 AFFORDABLE AND	8 DECENT WORK AND	Q INDUSTRY, INNOVATION	10 REDUCED	11 SUSTAINABLE CITIES	12 RESPONSIBLE	RGETS	Mortality / global population 2020-2030 Average << 2005-2015 Average	Countries with national & local DRR strategies 2020 Value 22 2015 Value
		ANDINFRASTRUCTURE				OBAL TAH	Affected people/ global population 2020-2030 Average << 2005-2015 Average	International cooperation
13 CLIMATE	14 LIFE BELOW WATER	15 LIFE ON LAND	16 PEACE, JUSTICE AND STRONG INSTITUTIONS	17 PARTNERSHIPS FOR THE GOALS	۲	19 2	Economic loss/ global GDP 2030 Ratio << 2015 Ratio	to developing countries 2030 Value >> 2015 Value Availability and access
	$\mathbf{\tilde{\mathbf{M}}}$			*	DEVELOPMENT GOALS		Damage to critical infrastructure & disruption of basic services 2030 Values << 2015 Values	systems & disaster risk information and assessmen 2030 Values >> 2015 Values

se

warning

ssments

Sustainable Development and Disaster Risk Reduction

Sustainable Development and DRR Integrated monitoring of the global targets of the Sendai Framework and the Sustainable Development Goals

What is Building Exposure for DRR?

Number of Buildings, Where, by Type and Cost, for the Purpose of Assessing Vulnerability and Hazard Proximity

Exposure Modelling is the Art of Distributing Inventoried People into Buildings

- Given the number of people, how many households?
- Given households, how much dwelling area?
- Given how much area of dwelling, how many buildings? How does this change in space?

- Is it cost effective to retrofit certain types of buildings regionally?
- Where should we focus retrofitting efforts?
- Are building codes cost effective, and where?
- What might happen after...
 - A hundred-year flood?
 - A large earthquake?
 - A volcanic eruption?
- There has just been a large earthquake...
 - What are the likely impacts?
 - Where is likely to have been affected the most?
 - How should we deploy resources?

- Is it cost effective to retrofit <u>this</u> building?
- Which buildings fell down? Which homes are flooded?
- Exactly how many buildings fell down?

Natural Hazard Mitigation Saves \$6 on Average for Every \$1 Spent on Federal Mitigation Grants.

Nation *BCR n	al Benefit-Cost Ratio (BCR) Per Peril numbers in this study have been rounded Overall Hazard Benefit-Cost Ratio	Beyond Code Requirements \$4:1	Federally Funded \$6:1
	Riverine Flood	\$5:1	\$7:1
6	Hurricane Surge	\$7:1	Too few grants
1	Wind	\$5:1	\$5:1
	Earthquake	\$4:1	\$3:1
1	Wildland-Urban Interface Fire	\$4:1	\$3:1

Natural Hazard Mitigation Saves Report NIBS

CAT Bonds in Developing Countries

Pricing of underlying peril risk*

Simulated Hurricane Tracks

Simulated Earthquake Events (Epicenters)

* For Natural Peril premised bonds, catastrophe models are used to assess underlying base risk through stochastic simulation of natural disasters and associated economic costs.

Source: Parametric Earthquake Cat Bond paper

Source: Swiss Re Capital Markets

Expectations

- Cannot typically expect accurate number of buildings at the cell level – count is approximate
- Cannot expect more accuracy than in the original base data sets
- Cannot expect to always capture small unmapped rural areas
- Challenges in remote sensing that will impact results (low lights, cloud cover, tree canopies etc.)
- Can not repurpose the data for civic purposes such as address-specific information for tax purposes

Challenges

- Data Availability
- Permissions
- Processing challenges
- Bias
- Human error
- Data gaps
- Misperception
- Accuracy
- False precision
- Explaining the data with clarity
- Inappropriate legacies
- Turnover
- Obsolescence
- Advancing technologies (AI, UAV, additional sensors)

The Basic Process of Developing Exposure Data

Introduction to Building Exposure Data Development: Key Concepts

27

What are the different Types of Exposure Levels?

How is an Exposure Database Developed?

Replacement Cost Value Estimate What is the role of Earth Observation Products?

■ Very High Urban ■ High Urban □ Urban ■ HD Res ■ Res ■ Rural

Example of Data Types by Exposure Level

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Summary of the 5 Levels of Exposure Data

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Steps for Developing a Building Exposure Database

- I. Estimate the Number of Buildings and People by Geography
- II. Estimate the Distribution of Buildings by Height (optional)
- III. Estimate the Distribution of Building by Development Patterns (optional)
- IV. Estimate the Structural Distribution by Development Pattern
- V. Bringing It All Together
- VI. Add Replacement Cost Values
- VII. Add Essential Facilities (as needed)

I. Estimate the number of buildings and people by geography

272

You can count buildings, or you can estimate number of buildings from population.

- Level 1: Population → Persons per Household → Average Area per Household, scale for non-residential
- Level 2: Population and Number of Households from Census
- Level 3: Refine Population and Building Counts using Land-use Data or Development Patterns
- Level 4: Aggregate from Building Footprints or Government Databases, Estimate Number of People
- Level 5: Use Building Specific Data, and Estimate Number of People

Estimate number of buildings and square footage per building

- People Per Household and Households per building
- Building Density by Earth Observation Factors
- OSM Building Data Footprint
- Height Profiles
- Micro-Census Data
- Population Density Correlation

Estimate the Number of Buildings and Built-Up Area from Building Extraction

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

II. Estimate the Distribution of Buildings by Height

- Estimated from Global EO Products and Datasets (JRC, OSM)
- Extracted from LIDAR, SAR, Stereoscopic Optical
- Height can be attributed in Building Level Data
- Height can be assumed from Development Patterns
- Height can be used to assume Structure Type

III. Estimate the Distribution of Building by Development Patterns:

Identifying and Delineating Development Patterns

Identify local construction types

Classify Development Patterns

Delineation of Development Patterns

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Benefits of Development Pattern Segmentation

IV. Estimate the Structural Distribution by Development Pattern

- Literature Review of Predominant Building Construction Types (PAGER, WHE)
- Attributes in Government Databases
- Interpretation of Satellite Data
- Virtual Reconnaissance
- Use Housing Census
- Stratified Sampling
- **Expert** Opinion
- Site Surveys

S/LFM

S/LFBR

S/LFINF

S/LO

0.0%

0.0%

2.2%

2.2%

15.6%

0.0%

0.0%

1.2%

0.4%

12.6%

0.0%

0.0%

0.4%

0.2%

5 2%

0.0%

0.0%

8.7%

2.9%

29.9%

0.0%

0.0%

0.0%

0.0%

53.8%

≥USGS

0.0%

0.0%

1.1%

1.1%

32.2%

0.0%

0.0%

0.0%

2.6%

14.4%

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Sampling Strategies for Improving the Mapping Scheme

Randomized Location Select for Bayesian Stratified Sampling

On-Site Building Inspection

Field Tools:

- Inventory Data Capture Tool (IDCT)
- Paper surveys
- Geo-tagged photos:
 - Ideal for linking to building footprints

IDCT Tool Workshop: Costa Rica Example

Local Communities will know More than International Reviewers

V. Bringing It All Together

Add Replacement Cost Values

- Estimate square meter per building type
- Estimate building value per meter by building type or occupancy
- Use building construction manuals
- Expert opinions
- Scalable using building durability factors
- Use GDP or median income
- Can be difficult to estimate the replacement cost in some developing countries

Add Essential Facilities

- Global or National Lifeline Databases (Dams, Electricity, Pipelines, Railroad, Ports)
- Humanitarian Data Exchange (UNESCO/UNICEF, HOTOSM)
- National or State Department of Education Databases
- National or State Department of Health Databases
- National Census Data

Summary: What is the role of EO in Developing Exposure Data?

- Global Urban/Rural or Urban Intensity Datasets
- Global Population and Building Datasets
- Segmentation of Development Patterns
- Building Footprint Extraction
- Average Building Size
- Al, ground-based sensors

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Structural Mapping Scheme Development and Building Sampling

Overview

• Development Patterns – what are they and why are they important?

• Mapping Schemes – how are taxonomies defined and developed?

Development Patterns

- Country-specific homogeneous regions of building types and densities created using remote sensing data
 - The distribution of buildings within each development pattern will generally share the same:
 - Structural characteristics / building materials
 - Building height / number of stories
 - Occupancy
 - Development patterns can be non-contiguous
 - Development pattern data will differ by region
 - US residential regions \neq Non-US residential regions

Why the Need?

Overview

- Predominately single-family residential
- Typical 1-2 story, light wood framed or engineered construction
- Multi-family and non-SFR regions would get washed out by the majority

Why the Need?

Types of Development Patterns - Rural

- Rural
 - Found outside of city boundaries
 - Typically associated with agricultural development
 - In developing countries, they consist of small, remote villages with single roads in and out and are developed using local construction practices and materials
 - Exclusively 1 and 2 stories

Afghanistan
Bangladesh
Bhutan
Burundi

Types of Development Patterns - Residential

- Residential
 - Dominated by single-family residential construction
 - Commercial properties, such as local markets are present, however residential is the primary occupancy
 - Built-up region may be dense, however open land (yards, vacant lots, etc.) will be present
 - All structures are typically low-rise, with a majority in the 1 to 2 story range

Bangladesh Bhutan Burundi

Afghanistan

High Density Residential Typically found in and around urban

- Typically found in and around urban centers
- Majority of the population lives in multi-family residential housing
- Buildings typically low-rise with occasional mid-rise structure

Types of Development Patterns – High Density Residential

Types of Development Patterns – Urban

27

- Urban
 - Found in and around major city centers
 - Buildings are tightly spaced and fairly regular in shape
 - Typically low to mid-rise residential and commercial structures, with the occasional high-rise

Types of Development Patterns – High Urban

- High Urban
 - Found in and around major city centers
 - Similar to central business districts within major cities
 - Mid to high-rise apartment and office buildings, with occasional low-rise structure situated in between
 - Many countries will not have this development pattern

Types of Development Patterns – Industrial

- Industrial
 - Areas dominated by ports, mining or industrial activities
 - Structures typically closely spaced and regular in shape
 - Majority of buildings are single-story warehouses
 - Supporting low-rise office and commercial structures nearby

Afghanistan Bangladesh Bhutan Burundi

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Other Special Types

- Informal Housing
 - Dense, informal settlements
 - Typically found on edges of large cities and are small standalone structures with little to no space between adjacent buildings
 - ۲ Settlements are unplanned, non-engineered and use accessible local materials

- Very High Urban
 - Global central business districts
 - Dominated by high-rise, engineered construction

Mapping Scheme Basics

Heuristic Evaluations of Construction Patterns for Generating a Building Exposure Database

Gather/Org	ganiz	ze Co	ensu	is Do	ata			
The United Republic of Tanzania		Pro (PA Ear	In the standard week of the second se	Global Earthquakes I Rapidly Determining P exet. Texcol. Alex. Mittael G Home. 1	for Response the Impact of seets 0. Means			
HOUSING CONDITION, HOUSEHOLD AMENTTES AND ASSETS MONOGRAPH 2012 Population and Housing Cross. Volume IV	2015	Open U.L.	J iso Staggert 2008–1131 September 1 die Industry entligieut die versy					
	Tan	zania	Tanzania	Mainland	Tanzan	ia Zanzibar		
Indicator	Number	Percentage	Percentage	Number	Percentage			
Main Materials Used for Flooring						10		
Earth/Sand	5,569,460	60.0	5,498,025	60.9	71,436	28.6		
Non Earth	3,650,472	39.3	3,471,757	38.5	178,716	71.4		
Animal Dung	57,064	0.6	57,003	0.6	61	0.0		
Main Materials Used for Walls								
Stones	96,930	1.0	55,557	0.6	41,373	16.5		
Cement Bricks	1,881,994	20.3	1,743,695	19.3	138,299	55.3		
Sundried Bricks	2,440,081	26.3	2,434,368	27.0	5,713	2.3		
Baked Bricks	2,442,815	26.3	2,441,336	27.0	1,479	0.6		
Timber	54,650	0.6	54,604	0.6	46	0.0		
Timber and Iron Sheets	24 158	0.3	23,955	0.3	203	0.1		
	24,100							
Poles and Mud	2,178,977	23.5	2,117,593	23.5	61,384	24.5		
Poles and Mud Grass	2,178,977	23.5 1.6	2,117,593	23.5 1.6	61,384 1,683	24.5 0.7		

Construct Mapping Schemes Per Built-up Environment

Development Pattern	W3	W5	S	C1H	C3L	C3M	C3H	М	RS	UFB	INF
1	0.04	0.09			0.16			0.15	0.01	0.07	0.48
2	0.01	0.05			0.53			0.05	0.02	0.05	0.30
3					0.50	0.10				0.30	0.10
5					0.05	0.60	0.05			0.30	
6				0.04	0.10	0.60	0.16			0.10	
7			0.25		0.25					0.40	0.10

• Scholarly / Online Reports

Pro: In-depth descriptions of structural materials, lateral forceresisting systems, construction methodologies, regionality and known structural deficiencies

- World Housing Encyclopedia
- Post-Disaster Needs Assessment

• Country Specific Assessments Pro: General overview of the builtup environment for a given country is provided. Data is often region specific and will typically provide statistics regarding wall, roof and floor materials.

Con: Availability can be limited. Information is typically limited to construction materials (not LFRS).

2 Pe		Tan	zania	Tanzania	Mainland	Tanzania Zanzibar			
isin Indica	ator	Number	Percentage	Number	Percentage	Number	Percentage		
Main	Materials Used for Flooring								
um Eart	h/Sand	5,569,460	60.0	5,498,025	60.9	71,436	28.6		
Non	Earth	3,650,472	39.3	3,471,757	38.5	178,716	71.4		
Anin	nal Dung	57,064	0.6	57,003	0.6	61	0.0		
Main	Materials Used for Walls								
Stor	nes	96,930	1.0	55,557	0.6	41,373	16.5		
Cem	nent Bricks	1,881,994	20.3	1,743,695	19.3	138,299	55.3		
Sun	dried Bricks	2,440,081	26.3	2,434,368	27.0	5,713	2.3		
Bake	ed Bricks	2,442,815	26.3	2,441,336	27.0	1,479	0.6		
Tim	ber	54,650	0.6	54,604	0.6	46	0.0		
Tim	ber and Iron Sheets	24,158	0.3	23,955	0.3	203	0.1		
Pole	es and Mud	2,178,977	23.5	2,117,593	23.5	61,384	24.5		
Gras	59	148,910	1.6	147,227	1.6	1,683	0.7		
Tent	t	8,483	0.1	8,451	0.1	32	0.0		

 Global Building Databases
 Pro: General overview of the builtup environment for a given country. Detailed descriptors of lateral force-resisting systems
 Con: Will need to adjust for development pattern specific distributions. Not all countries available (proxies used)

Country Name	× ¥ ×	¥1 ≤	¥2 *	₩3 *	_¥4 ×	¥5 =	S3 🔨	C 🗉	C3L *	C3N *	C3F -	RM *	M ×	M1 🔨	M2 *	A -	RE *	RS 🗉	RS1 =	RS2 *	RS: *	DS -	UFE	UCE 🔨	MS *	TU *	INF 🔨	UNK
Afghanistan									0.016							0.707	'	0.234					0.043					
Angola						0.25										0.5	5										0.25	
Bangladesh				0.04		0.089			0.159				0.154					0.005					0.07				0.483	
Benin						0.037							0.249			0.667	'						0.047					
Bhutan	0.1059	0.02	0.15						0.15							0.0235	0.0556		0.36		0.0666	i	0.034	0.0317			0.0027	
Burkina Faso						0.0471							0.7232											0.1269			0.1028	
Burundi	0.002					0.02										0.506	;						0.41	0.062				
Cambodia		0.007		0.563		0.114																	0.126	0.19				
Central African Republic	0.01					0.05			0.05				0.05			0.75	j l						0.04				0.05	
Chad						0.037							0.249			0.667	1						0.047					
Comoros	0.45																		0.15					0.15			0.25	
the Democratic Republic of the Congo	0.051					0.22							0.065			0.173	}		0.004				0.273	0.089			0.124	
Djibouti	0.2419					0.1398							0.0022			0.2914	ł	0.0344						0.1355			0.1548	
Eritrea	0.069					0.132			0.007									0.416			0.089	I	0.014	0.117			0.155	
Ethiopia	0.18					0.5							0.05			0.05	;	0.09					0.01				0.12	
Gambia													0.7			0.125	5							0.125			0.05	
Guinea								0.02					0.32			0.44	l I										0.22	
Guinea-Bissau								0.02					0.32			0.44	l I										0.22	
Haiti				0.01					0.12									0.02						0.75			0.1	
Kiribati	0.7								0.05															0.25				
the Lao People's Democratic Republic	0.8164																	0.0892					0.0944					
Lesotho						0.0452										0.0327	,	0.0061		0.328	0.1141		0.0461	0.4278				
Liberia	0.0034					0.7874												0.0079					0.1408	0.0489			0.0117	
Madagascar	0.1					0.15										0.1	1							0.55			0.1	
Malawi	0.01												0.36			0.47	0.03						0.13					
Mali									0.02			0.04	0.18			0.58	}							0.18				
Mauritania						0.25			0.35							0.25	5							0.15				
Mozambique	0.07												0.37			0.4							0.13	0.03				
Mvanmar	0.0011					0.5502							0.2575										0.0025				0.1888	
Nepal	0.05					0.171										0.012		0.493					0.204				0.07	
Niger						0.27										0.3	1						0.05				0.38	
Rwanda	0.0086					0.4388										0.5345	1	0.0024					0.0125	0.0023			0.001	
Sao Tome and Principe	0.6																						0.15				0.25	
Senegal						0.25			0.35							0.25	5							0.15				
Sierra Leone	0.0052					0.2581										0.6183	3	0.0022					0.0054	0.0713			0.0395	
the Solomon Islands	0.9645																							0.0151			0.0205	
Somalia	0.05					0.5							0.15			0.05	5	0.08						0.02			0.15	
South Sudan	0.07					0.86							0.06										0.01					
Sudan	0.0763					0.4703							0.2746			0.0763	3						0.0856	0.0169				
the United Republic of Tanzania	0.0219					0.2349										0.263	3	0.0104					0.2633	0.2029			0.0035	
Timor-Leste	0.3301					0.3084										0.0152		0.0064					0.2862				0.0537	
Togo						0.183										0.3482		0.0374					0.05	0.3			0.08	
Tuvalu	0.2273					0,183		0.559																			0.0307	
Uganda						0.25										0.	1	0.05					0.5	0.05			0.05	
Vanuatu	0.0833					0.5641		0.1783																0,1513			0.023	
Yemen						0.0275							0,1343			0.0183	}	0.4517				0,117		0.2482				
Zambia						0.0775							0.0957			0,3088	}	0.0543					0.2508	0.2128				

• Building Code

Pro: Country (or region) specific guidelines using applicable materials and construction techniques.

Con: Enforcement can often be limited, therefore specifications (per code) may not be reflected in the field. Access to the code may be limited. Technical background may be required to interpret code.

Mapping Scheme Basics – Identify Construction Types

User Submitted / Online Imagery / Ground Survey

Pro: Widely available via online photos, street-view, online photos, etc. Post-event (damage) videos/photos often available. Identify correlation between roof type (shape, covering, etc.) and wall materials/structural system Con: May be limited (rural regions are often not covered, ground photos only).

Mapping Scheme Basics – Identify Construction Types

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Mapping Scheme Basics – Identify Construction Types

Historic Satellite Imagery

Historic Ground Imagery

Check all sides (if possible)

Mapping Scheme Basics – Distributing Building Attributes

275

• Use any available census / housing data (rural, residential)

	Resi	dence	
Housing characteristics	Urban	Rural	Total
Flooring material ¹			
Earth, sand	32.5	81.5	67.8
Wood planks	0.4	0.2	0.2
Ceramic tiles	5.6	0.3	1.8
Cement	61.0	17.7	29.8
Roof materials			
Natural roof	0.2	1.7	1.3
Palm/bamboo	0.1	0.1	0.1
Wood plank/card board	0.1	0.0	0.0
Tin	70.0	90.8	85.0
Wood	0.2	0.2	0.2
Ceramic tiles	0.5	0.1	0.2
Cement	28.4	5.3	11.8
Roofing shingles	0.3	1.5	1.1
	0.1	0.0	0.2
Wall materials			
Jute stick/paim trunk	0.8	2.9	2.3
Mud/dirt	4.4	14.5	11.7
Bamboo with mud	4.5	8.9	1.1
Comont	50.2	40.3	40.0
Stone with lime/coment	1.6	10.9	20.2
Bricks	4.9	7.0	6.4
Wood planks	4.5	1.1	1.0
Other	0.3	0.9	0.7
Rooms used for sleeping			
One	31.2	31.7	33.2
Iwo	36.2	37.7	37.3
Three or more	26.7	30.6	29.5
Total	100.0	100.0	100.0
Persons per sleeping			
room			
1-2	63.2	66.2	65.3
3-4	29.1	26.4	27.2
5-6	6.5	6.5	6.5
/+	1.2	0.8	1.0
Total	100.0	100.0	100.0
Number	4.844	12 456	17.300

Table 2.5. Housing characteristics

 Table 12.10: Households by Main Type of House and Material Used for Construction of Walls, 2016

						Ma	in Wall M	aterial					
Main Type of House	Cane/ Tree trunks	Stick and mud	Masonite /Cardboa rd	Stone with mud	Burned Mud Bricks	Mud Bricks	Stone with lime/c ement	Advan ced Stone	Sand/C oncrete Blocks	Advance d Burned Bricks	Corrugated Iron/ Metal sheets	Other (Specif y)	Total
Rontabole/ Mokhoro	1,479	13,522		99,872	368	4,728	4,677	87	2,888	167		12	127,800
Heisi	174	1,786		10,134	235	1,666	2,676	106	4,429	328		2	21,536
Polata	282	4,590		44,205	4,027	6,974	27,80	1,145	89,778	3,758		31	182,656
Malaene		206		3.127	3.871	1.893	13,27	762	79.921	3,902		1	106.962
Optaka	23	127		3,509	1,580	768	7,447	894	32,786	4,366		9	51,509
Apartment/ Town House			117				1,006	256	3,967	2,383		4	7,733
Bungalow/ Mansion			65				2,899	881	15,924	6,397		11	26,177
Mansion Temporary Structure/ Mok'huk'hu			484								12,600		13,084
Total	1,958	20,231	666	160,84 7	10,08 1	16,02 9	59,85 0	4,131	229,69 3	21,301	12,600	70	537,45

Wall Type	PAGER
Jute stick/palm trunk	W3 (Wood)
Mud/dirt	M (Mud Walls)
Bamboo with mud	W5 (Wattle and Daub)
Tin	INF (Informal Construction)
Cement	C3 (Non-ductile RC Frame w/ URM Infill)
Stone with lime/cement	RS (Rubble Stone)
Bricks	UFB (URM Fire Brick)
Wood Planks	W3 (Wood frame unbraced post/beam)
Other	M (Mud Walls)

	Country Name	W	W1	W2	W3	W4	S	S1	S1L	S1M	S1H	S2	S2L	S2M	S2H	S3	S4	S4L
	Afghanistan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- 1	Aland Islands	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Albania	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Algeria	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	American Samoa	0.00	0.46	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Andorra	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.02	0.00
	Angola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		!		!	
	Anguilla	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	2118	20			
	Antarctica	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	science for a change				
	Antigua and Barbuda	0.00	0.44	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0					
	Argentina	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	Creating	j a Global	Building	Inventory	for
	Armenia	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	Earthqua	ake Loss A	ssessme	nt and Ris	k
	Aruba	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	Manage	ment			
	Australia	0.06	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0					
	Austria	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0					
	Azerbaijan	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	and the second				
	Bahamas	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	and the second second				
	Bahrain	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	and the second second	000			
	Bangladesh	0.01	0.00	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	Sec. 1	COLUMN TWO	Sinc Survey	an 191	ALC: NO
	Barbados	0.57	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	Carro	11.5		Training of	
	Belarus	0.00	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.09	0.0	100	Mar			
	Belgium	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	100				
	Belize	0.70	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		10 C 10	and the second	1.1	
	Benin	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0				and the second	
	Bermuda	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1 A 1	7-11-1			100
	Bhutan	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0					
	Bolivia	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	Once Elo Rec	out 2008-1180			
	Bosnia and Herzegovin	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	spontine net	AND 2000/~1100			
	Botswana	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0					
	Bouvet Island	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	U.S. Department of 1 U.S. Geological Sur	he laterier Hy			
	Descil	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0					

Mapping Scheme Basics – Distributing Building Attributes

• Use any available country-specific exposure studies (all development patterns)

3.1 BUILDING TYPOLOGY

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Mapping Scheme Basics – Distributing Building Attributes

- Stratified sampling/categorization for development/validation
 - Desktop or Field Survey

Ō

Mapping Scheme Basics – Final Thoughts

Mapping Scheme Breakdown by Development Pattern Type										
Construction Type	DP1	DP2	DP4	DP5	DP6	DP7				
UNREINFORCED CONCRETE BLOCK MASONRY (1 to 3 STORIES)	91.6	82.7	96.0	52.2	63.8	68.1				
WATTLE AND DAUB (WALLS WITH BAMBOO/LIGHT TIMBER LOG/REED MESH	5.4					0.2				
INFORMAL CONSTRUCTIONS	2.3	0.4	3.6	1.7	3.1	0.7				
REINFORCED CONCRETE MOMENT FRAME (1 to 3 STORIES)	0.2	0.4		2.6	4.4	3.8				
WOOD	0.2	0.4				0.5				
UNREINFORCED RUBBLE STONE MASONRY	0.2									
UNREINFORCED FIRED CLAY MASONRY		15.6								
NON-DUCTILE REINFORCED CONCRETE INFILLED FRAME (1 to 3 STORIES)		0.4	0.4	26.3	13.1	12.7				
NON-DUCTILE REINFORCED CONCRETE INFILLED FRAME (4 to 7 STORIES)				10.2	4.6	1.2				
REINFORCED CONCRETE MOMENT FRAME (8 to 20 STORIES)				3.2	2.4					
NON-DUCTILE REINFORCED CONCRETE INFILLED FRAME (8-20 STORIES)				1.3	4.8					
UNREINFORCED CONCRETE BLOCK MASONRY (4 to 7 STORIES)				1.1	0.4					
REINFORCED CONCRETE MOMENT FRAME (4 to 7 STORIES)				0.8	2.0	0.7				
STEEL				0.6	1.5	12.0				

- Online search identify all relevant construction types/materials unique to the region
- Identify / validate construction types
 via satellite or ground imagery
- Make use of census/region/field survey data for preliminary mapping schemes
- Stratified sampling to develop/validate mapping schemes for other development patterns

Sanity Check

- Do the results make sense?
 - Height profiles
 - Local materials
 - Engineered construction

Case Study: Walkthrough of Building Exposure Data for Tunisia

Case Study Objective

- Perform a multi-hazard study for the Republic of Tunisia for flood and earthquake risks
 - Tasks Included
 - Exposure development and review for incorporation into a format suitable for loss estimation and data collection
 - Guidance on vulnerability assignment
 - Assessment of risk
 - Visualization within a BI tool

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

Assess the Built-Up Environment

• What type of permitted (and non-permitted) construction and building materials are prevalent throughout the country?

Census / Housing Data

<section-header><section-header><section-header><image><image><image><image><image><image>

U.S. Department of the Interior U.S. Geological Survey Profil National de Riso Tunisie

Country Profile Studies / Surveys

National Catastrophe Risk Profile (World Bank)

 Country specific survey documenting structural types and associated vulnerability CURVES
 ID [Lateral Force-Resisting System (LFRS) |Description

ID	Lateral Force-Resisting System (LFRS)	Description
1	Maçonnerie en pierre non armée	Unreinforced Masonry (URM), Stone
2	Maçonnerie en brique non armée	URM Fired Brick
3	Maçonnerie fragile	Fragile Masonry
4	Maçonnerie chainée	Confined Masonry
5	Structure en béton armé	Reinforced Concrete with URM
6	Structure en acier	Steel Frame with URM
7	Structure en béton armé double	Engineered, RC Frame

Natural Disaster Risk Financing & Insurance in Tunisia (World Bank, Ernst & Young)

Governorate	Type of House	Number of homes by type of housing (2014)	Number of homes by type of housing (2020)	Surface area / type of housing (m²) 2014)	Surface area / type of housing (m²) (2020)	cost of m ² of the building (TND)	Reconstruction cost (TND) / type of housing (2014)	Reconstruction cost (TND) / type of housing (2020)
Tunis	Traditional housing	27,029	30,232	2,702,900	3,023,225	800	2,162,320,000	2,418,580,321
Tunis	Rudimentary housing	1,989	2,225	69,615	77,865	380	26,453,700	29,588,774
Tunis	Semi-detached housing or floor of semi-detached housing	185,369	207,337	15,941,734	17,831,017	1,200	19,130,080,800	21,397,220,093
Tunis	villa or duplex	51,921	58,074	7,788,150	8,711,137	1,400	10,903,410,000	12,195,592,166
Tunis	Apartment	77,040	86,170	9,398,880	10,512,758	1,250	11,748,600,000	13,140,947,109
		343,348	384,039	35,901,279	40,156,002		43,970,864,500	49,181,928,464
Ariana	Traditional housing	10,809	11,878	1,016,046	1,116,514	800	812,836,800	893,210,851
Ariana	Rudimentary housing	517	568	17,061	18,748	380	6,483,180	7,124,243
Ariana	Semi-detached housing or floor of semi-detached housing	94,700	104,064	11,932,200	13,112,067	1,200	14,318,640,000	15,734,480,304
Ariana	villa or duplex	40,567	44,578	5,679,380	6,240,962	1,400	7,951,132,000	8,737,347,251
Ariana	Apartment	33,982	37,342	2,956,434	3,248,769	1,250	3,695,542,500	4,060,961,144
		180,575	198,430	21,601,121	23,737,060		26,784,634,480	29,433,123,794

- Building count per governorate, per industry
 - Identify distribution of the various occupancies and building types (5 types of residential, retail, financial and tourism) for a given governorate
 - Provides starting point for mapping schemes, given a vulnerability can be assigned to each occupancy type
 - Suitable for:
 - Predominately residential development patterns
 - Rural
 - Single-family residential
 - High density residential

GADM_NAME	Traditional housing	Rudimentary housing	Semi-detached housing or floo of semi-detached housing	villa or duplex	Apartment	Retail	Financial	Tourism
Tunis	7.1%	0.5%	48.7%	13.6%	20.2%	9.6%	0.2%	0.0%
Ariana	5.5%	0.3%	48.2%	20.6%	17.3%	8.0%	0.1%	0.0%
Ben Arous (Tunis Sud)	7.7%	0.3%	51.3%	19.9%	13.4%	7.4%	0.0%	0.0%
Manubah	16.0%	0.2%	53.3%	17.4%	4.3%	8.7%	0.0%	0.0%
Nabeul	20.6%	0.3%	49.1%	19.1%	3.9%	7.0%	0.1%	0.0%
Zaghouan	36.9%	0.6%	28.5%	25.5%	1.2%	7.2%	0.1%	0.0%
Bizerte	15.4%	0.3%	61.6%	12.5%	3.4%	6.7%	0.1%	0.0%
Béja	39.8%	0.8%	34.4%	16.5%	1.2%	7.4%	0.0%	0.0%
Jendouba	28.0%	1.0%	19.2%	44.4%	1.8%	5.4%	0.1%	0.0%
Le Kef	40.0%	0.5%	35.4%	17.3%	0.9%	5.8%	0.0%	0.0%
Siliana	52.7%	0.6%	19.5%	20.3%	0.8%	5.9%	0.1%	0.0%
Sousse	22.1%	0.3%	30.2%	26.2%	13.5%	7.7%	0.1%	0.0%
Monastir	28.0%	0.3%	41.5%	17.2%	5.9%	7.1%	0.1%	0.0%
Mahdia	43.7%	0.3%	17.7%	28.3%	3.1%	6.9%	0.1%	0.0%
Sfax	13.5%	0.2%	21.8%	48.6%	8.7%	7.0%	0.1%	0.0%
Kairouan	50.5%	0.3%	30.3%	12.4%	0.7%	5.7%	0.1%	0.0%
Kassérine	46.9%	0.6%	32.0%	14.0%	1.1%	5.5%	0.0%	0.0%
Sidi Bou Zid	40.4%	0.4%	13.8%	39.2%	1.0%	5.2%	0.0%	0.0%
Gabès	29.1%	0.3%	47.2%	15.2%	2.0%	6.3%	0.0%	0.0%
Médenine	30.7%	0.4%	10.7%	51.3%	0.9%	6.1%	0.0%	0.0%
Tataouine	29.9%	0.3%	45.7%	16.3%	2.1%	5.7%	0.0%	0.0%
Gafsa	25.2%	0.4%	36.6%	25.0%	7.2%	5.5%	01%	6
Tozeur	56.3%	0.3%	14.3%	21.7%	0.9%	6.3%	0.1%	0.1%
Kebili	40.7%	0.2%	8.4%	42.6%	0.6%	7.6%	0.0	6.01

Tunisia Housing Profile (UNHABITAT)

TUNISIA HOUSING PROFILE

- Description and visualization of each of the five different housing types mentioned in the E&Y spreadsheets
- Allows us to validate structural assumptions using ground imagery
- Suitable for: •
 - Predominately residential development patterns

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling

UN@HABITAT

Tunis Building Inventory/Survey (University of Tunis El Manar)

ORIGINAL RESEARCH PAPER

An inventory of buildings in the city of Tunis and an assessment of their vulnerability

Afef Khalfet Mansour · Najla Bouden Romdhane · Noureddine Boukadi

Received: 4 August 2012 / Accepted: 7 April 2013 / Published online: 23 April 2013 © Springer Science+Business Media Dordrecht 2013

Abstract Tunis is a densely populated city. Its building stock was constructed without any seismic design code and mostly over soft soils. These facts make a seismic risk assessment of the city necessary. To prepare a large-scale vulnerability assessment of the buildings of Tunis, the following methodology was employed: (1) a collection of data based on a rapid visual screening procedure was gathered using an inventory form. These data were composed of files and information placed at the disposal of the authors by the municipality of Tunis. The data also contained information gathered by surveys carried out by engineering departments and information gathered from building owners. (2) A classification of building typologies was carried out considering construction material, structural system, age, height, function and state of maintenance. A measure of seismic vulnerability was assigned to each typology considering the first two parameters. (3) A large-scale vulnerability assessment using two methods was conducted for buildings for which few data were available. Vulnerability methods inspired by the EMS98 concepts and the Italian GNDT concepts were modified and applied to pilot-scale buildings located in the downtown zone (Habib Bourguiba Avenue) and in the old zone (Medina). The data analysis, through the application of the two methods, suggests that the vulnerability of buildings surveyed in Tunis is significant and risk mitigation efforts are necessary.

1 Introduction

Tunis, the capital city of Tunisia since the twelfth century, is located in the northeast of Tunisia. It has a population of over 700,000 people according to the 2004 census.

A. Khalfet Mansour (⊠) - N. Bouden Romdhane Department of Civil Engineering, National Engineering School of Tunis, University of Tunis El Manar, Tunisia e-mail: afeRhalfet@gmail.com

N. Boukadi Department of Geology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia

- Non-residential statistics
- Direct observation and statistical breakdown of structural types unique to the downtown (urban) region
 - LFRS
 - Story heights
 - Occupancies
 - Age
- Suitable for:
 - Predominately urban development patterns

Sampling for Industrial Development Patterns

- Statistics regarding Industrial regions not available in sourced data
 - E&Y data provides # lots and lot size but no information regarding structure
- Sampling strategy to determine structural distribution
 - Street-view imagery available via Google Maps and Mapillary
 - Record structural information and height distribution

Development Modeling

- Used Machine Learning to classify development patterns
 - Digitized region for training
- Processing done in Google Earth Engine platform
 - Availability of data
 - Ease to pre-process data (combine datasets, data normalization)
 - Built-in learning models
 - Export features
- Resolution: 15 arc-seconds (~450 meters)

Exposure Disaggregation

- Geographically distribute the exposure onto classified grid
 - Model density of the exposure using remote sensing signal
 - Model proportion of each exposure type in each development pattern
- Apply mapping scheme to assign damage functions
- Exposure types to disaggregate
 - General Residential/General Commercial/ General Industrial
 - Education/Financial/Health/Tourism
- Exposure types that will not be analyzed
 - Point specific: Port/ Transport /Dams
 - No adequate damage function: Agriculture/Roads

Exposure Refinement for Flood Risk

- Flood model require higher resolution data than earthquake
- Exposure near riverine area must be capture properly to have true understanding of risk
- For Tunisia, we refined exposure to 90m in region with flood hazard

Hazard Data

- Flood
 - Fluvial defended, Fluvial
 Undefended and Pluvial
 data
 - 10 return periods (5, 10, 20, 50, 100, 200, 250, 500, 1000)
- Earthquake
 - Gridded return period
 PGA
 - 7 return periods (20, 50, 100, 250, 500, 2500, 5000)

Pluvial 1 in 1000 year

PGA on Rock 2500-year

Damage/Loss Calculation

- Calculate Loss from return period hazard for each exposure grid using appropriate vulnerability
- Calculate Annualized Average Loss
 (AAL) for each grid
- Aggregate AAL for each
 governorate

Part 1: Summary

Summary

- What is exposure data, and how is it used in the loss estimation process?
- The basic process of developing exposure data
- Structural mapping scheme development and building sampling
- Case Study: walkthrough of building exposure data for Tunisia

Looking Ahead

- Part 2: Development of Site-Specific Exposure Data with EO
 - Developing a building-level exposure data set for HAZUS Flood Study in New York
 - Using Earth Observations to develop a building structures dataset
 - Case study: Sampling from streetview to characterize vulnerability

Contact Information

275

Trainers:

- Charles Huyck
 - <u>ckh@imagecatinc.com</u>
- Georgiana Esquivias
 - gre@imagecatinc.com
- Michael Eguchi
 - <u>mte@imagecatinc.com</u>
- Brock Blevins
 - brock.blevins@nasa.gov

- ARSET Website
- Follow us on Twitter!
 - <u>@NASAARSET</u>
- <u>ARSET YouTube</u>

Visit our Sister Programs:

- DEVELOP
- SERVIR

Thank You!

NASA ARSET – Transforming Earth Observation (EO) Data into Building Infrastructure Data Sets for Disaster Risk Modeling