
National Aeronautics and Space Administration

John Just (Deere & Co., Iowa State University), Erik Sorensen (Deere & Co.)
March 12, 2024

Large Scale Applications of Machine Learning using Remote Sensing 
for Building Agriculture Solutions
Part 2: Data Loaders for Training ML Models on Irregularly-Spaced 
Time-Series of Imagery



Large Scale Applications of Machine Learning using 
Remote Sensing for Building Agriculture Solutions

Overview



3NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Motivation for Training 

• Timely and accurate in-season crop maps at 
local to regional scales are crucial for 
agricultural decision-making and management. 

• Irregularly-spaced time-series are common with 
optical satellite images.

• Training robust models on remote sensing data 
often requires very large data, but processing 
and training is complex. 

• The Cropland Data Layer (CDL, USDA–NASS) 
only gives estimates of the types of crops 
released to the public a few months after the 
end of the growing season, and not their 
sequence or timing (e.g., for double crops). Montage of images shows differences in field 

geometry and size in different parts of the world. 
Image credit: NASA (Instrument: Terra – ASTER)



4NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Training Learning Objectives

By the end of this training series, participants will be able to:
• Use recommended techniques to download and process remote sensing data from 

Sentinel-2 and the Cropland Data Layer (CDL) at large scale (> 5GB) with cloud tools 
(Amazon Web Services [AWS] Simple Storage Service [S3], Databricks, Spark/Pyspark, 
Parquet).

• Produce interactive plots of maps, tables, time series, etc. for investigation & verification of 
data and models.

• Filter data from both the measured (satellite images) and target (CDL) domains to serve 
modeling objectives based on quality factors, land classification, area of interest (AOI) 
overlap, and geographical location.

• Build training pipelines in TensorFlow to train machine learning algorithms on large scale 
remote sensing/geospatial datasets for agricultural monitoring.

• Utilize random sampling techniques to build robustness into a predictive algorithm while 
avoiding information leakage across training/validation/testing splits.



5NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Prerequisites

• Basic/general understanding of Python programming in Databricks from Part-1.
• Access to the associated data from Part-1.
• Sign up for and access Databricks Community Edition

https://docs.databricks.com/en/getting-started/community-edition.html


6NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Training Outline

Part 3
Training & Testing 

ML Models for 
Irregularly-Spaced 

Time Series of 
Imagery

March 19, 2024

Homework

March 05, 2024

Part 1
Data Preparation of 
Imagery for Large-
Scale ML Modeling

Part 2
Data Loaders for 

Training ML Models 
on Irregularly-

Spaced Time-Series 
of Imagery

March 12, 2024

A certificate of completion will be awarded to those who attend all live sessions and 
complete the homework assignment(s) before the given due date. 

Opens March 19 – Due April 1 – Posted on Training Webpage 



7NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

How to Ask Questions

• Please put your questions in the Questions box and we will address them at the 
end of the webinar.

• Feel free to enter your questions as we go. We will try to get to all the questions 
during the Q&A session after the webinar.

• The remainder of the questions will be answered in the Q&A document, which will 
be posted to the training website about a week after the training.



Large Scale Applications of Machine Learning using Remote 
Sensing for Building Agriculture Solutions

Part 2: Data Loaders for Training ML Models on Irregularly-
Spaced Time-Series of Imagery



9NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Part 2 – Trainers

John Just
Principal Data Scientist

John Deere

Erik Sorensen
Senior Data Scientist

John Deere



10NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Part 2 Objectives

By the end of Part 2, participants will be able use Python in Databricks Community 
Edition to: 
• Split the dataset into train/val/test to avoid data leakage across time/space.
• Build a specialized/optimized queue (TensorFlow data loader):

– Extract/read Parquet files into time-series of pixels (with random selection).
– Filter any data we might want to ignore (e.g., double cropping).
– Apply augmentations (e.g., random selections of dates for each pixel).
– Bucketize irregularly spaced time-series per pixel into regular time intervals.
– Normalize values to aid convergence during optimization.

• Optimize data pipeline for speed using parallelization and view benefits.



11NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Review of Prior Knowledge

• Satellite imagery has high time-series irregularity due to things like cloud cover.
• The Cropland Data Layer (CDL) is a model that provides labels of which crops are 

growing in the contiguous US and is released at the end of the year.
• Storing data as byte-strings in Parquet files allows efficient storage of large time-

series data.



Part 2 Section 1:
About TensorFlow & Data Flow



13NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

TensorFlow

Open-Source library from Google for creating scalable end-to-end machine 
learning pipelines: Tensorflow.org

Part-2 (this part) Part-3 (next time) Other capabilities (not used in demo)

https://www.tensorflow.org/


14NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Data Flow

Part 1 (built a dataset) Part 2 (build a dataloader)

Part 3 
(model training 
and inference)

We are here

• tf.io • tf.map • tf.interleave
• tf.batch
• tf.prefetch

tf.keras



Part 2 Section 2:
TensorFlow Data Pipelines



16NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

The Data Pipeline Overview
Several nice explanations for Tensorflow (TF) data pipelines exist, e.g., Stanford’s CS230 (from Andrew Ng), and 
directly from the TF docs. According to the CS230 suggestions, one good order for operations is as follows:
1. Get a list of Parquet file path locations
2. Read in each file’s contents as TensorFlow dataset. Could be a generator (lazy file loading) or in memory 

(rows in a table). For this demo, we load in the data in-memory due to performance on DB Community
3. .filter()

– Filters out any data we do not want during training (e.g., double cropping labels)
4. .shuffle()

– Randomly shuffles the order of the data to diversify the samples in each batch and ultimately find 
more robust gradient updates

5. .map(parse function)
– Applied to each pixel/year to sample, bin image values, and prepare along with labels for modeling

6. .batch training data and label outputs
– Loads “N” (batch size) number of examples from map each call for data

7. .prefetch
– Does all the above in background processes (parallel queue “producer”) from the main process 

(“consumer”, where model training occurs) to minimize wait time for new training batches

https://cs230.stanford.edu/blog/datapipeline/
https://www.tensorflow.org/guide/data_performance


17NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Example TensorFlow Dataloader Code

train_ds = train_files_ds \
.filter(filter_double_croppings) \
.shuffle(BATCH_SIZE*10) \
.map(lambda x: parse(x, norm=True), num_parallel_calls = tf.data.AUTOTUNE) \
.batch(BATCH_SIZE) \
.prefetch(1) \

NOTE: num_parallel_calls controls how many CPUs are used for parallelization of the 
mapping function



18NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

.map(function)

Map is where the bulk of the work is performed in the dataloader. It can parallelize 
the application of a [customized] function to the input data. In our case, we apply a 
parsing function that:
• Reads in each row from the Parquet files,
• Converts data features from raw bytes into tf.tensors using tf.io.decode_raw()

– Reading data as bytes guarantees the data is loaded properly,
• Bucketizes data (randomly selects 1 image if more than 1 available per interval) 

and forms into a (num buckets)*(num bands) array,
• Performs normalization (important for the optimization process),
• One-hot-encodes the labels (loss function expects the labels to be in this format), 

and
• Returns tuple of data features and labels.



19NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Reading Byte Strings with Tensorflow.IO

• Recall from Part 1
– Time-series of images were grouped by 

each CDL pixel/year
– These time-series were converted into 

byte strings for more efficient storage
• Most datatypes (e.g., images) involve 

decoding. TF has functions to decode the 
byte strings using tf.io.decode_raw()

• decode_raw() just needs the expected 
datatype of the data (e.g., float32, string) 
and it will convert the byte string back into 
the original multidimensional array
– Array shape: [num_images, num_bands]

tf.io.decode_raw(byte_string, tf.int32)

Decoded Multi-Dimensional Data

Byte String Input



Part 2 Section 3:
Preparing Dataset for Model Training



21NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Train/Val/Test With Time-Series Data

Before training a model, we need to set aside some data to 
use for validation & testing (not used for model training).
• The Validation dataset is mainly used to 

– avoid overfitting
– tune hyperparameters

• The Test dataset is primarily used to gauge how model may 
perform in production/real-world performance  (test)

• A common split of the dataset is as follows:
• Train: 80%
• Validation: 10%
• Test: 10% 

Overfitting Loss Curve

Optimal Time to Stop Training



22NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Train/Val/Test For Crop-Type Prediction

• We must be careful to not “leak” any information across 
time/space from the training set into the validation or test 
sets, else our model’s performance may look better than it 
may perform in reality.

• For our task of predicting CDL labels using imagery, we 
perform the train/val/test splits using the year the images 
were taken. This ensures no information is shared between 
the data splits.
– 2021 train, 2020 validation, 2019 test

Overfitting Loss Curve

Optimal Time to Stop Training



23NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Normalization
• The inputs to our model are the 12 Sentinel-2 bands, which each have a different 

range of values. This is not conducive to typical optimization procedures.
• Normalization is the process of making each feature have a mean of 0 and std of 1

– This step is typical for optimization procedures in statistical modeling or 
convergence issues can result.

X_normalized = (X – mean_of_features) / std_of_features



24NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Date: 4/5 4/10 4/25 4/30 5/5 5/15 5/30 6/5 6/15 6/20

NDVI: 0.2 0.21 0.25 0.33 0.40 0.70 0.75 0.73 0.80 0.75

Bucketing Irregularly-Spaced Time-Series Data
• Most model architectures require 

standard input size for model training, so 
having time-series with differing number 
of images won’t work.
– e.g., 1D-CNN (Convolutional Neural 

Network)
• We need to standardize the length of 

the input time-series.
• We do this by taking images within a 

randomly sampled date range, 
bucketing the time-series with a 
constant size for each bucket (e.g., 5 
days), and padding any buckets without 
imagery with 0 values.
– The random sampling also helps the 

model’s generalization performance
• This ensures each time-series is the same 

length for model training.
• The final data loader uses a time-range 

of 120 days.

0 0 0 0

Pad time-steps 
with no images 

with 0s

Randomly Sample 
Date Range of 45 Days

[4-10 to 5-25)

Bucketize the data into 
consistently spaced 

time-series with 
bucket size = 5 days

Irregularly Spaced Time-Series of Images

Date: 4/10 4/25 4/30 5/5 5/15

NDVI: 0.21 0.25 0.33 0.40 0.70

Date: 4/10 4/15 4.20 4/25 4/30 5/5 5/10 5/15 5/20

NDVI: 0.21 0 0 0.25 0.33 0.40 0 0.70 0

Results in:
45 days / 5 bucket size = 9 time-steps in the final time-series



25NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Results of Bucketing The Data (Discretizing in Time Dimension)

Example:
• 38 images total
• 180-day timeframe/span
• Discrete time interval “bucket” size of 

5-days
• Buckets/intervals with no image are 

given a default “0” value.
– Akin to substituting a “mean” value 

for each band when all data is 
normalized.



26NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Scene Classification Layer Filtering
Of all the categories, the Scene Classification (SCL) layer is most reliable at identifying when 
something is vegetated (i.e., high precision). Thus, we can use this particular output from the 
SCL to signal when it’s a reasonable time to predict crop type (e.g., at least one image from 
the last 2 (approx. 10 days) in the time-series must have been vegetated).

These areas during initial crop 
growth and late senescence 
have vegetation but are not 
picked up by the SCL classifier 
as vegetation. Thus, we need 
to require vegetation within a 
certain timeframe of latest 
image to make a prediction.

Vegetation 
(green points)



27NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Modifying Target Variables to Align with Training Goals

• Limit the target space to align with our goals to reduce problem complexity.
– E.g., focus on vegetated timeframes.

• In this example, we want to identify 
– 4 major crop types: Corn, Soybeans, Cotton, and Rice
– 1 label for other cultivated crops (general crops) 
– 1 label for uncultivated areas (e.g., urban areas)
– 0 for any area without a crop growing that is otherwise cultivated

• Reduces the target space of the CDL from 100+ labels to 6 labels.
– This can be customized depending on your own training goals.



28NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Target Variable Groups Summary
“Other Crops” CDL
Labels

Other Hay/Non-
Alfalfa Winter Wheat

Pop or Orn Corn Alfalfa

Peanuts Potatoes

Sorghum Peas

Oats Herbs

Peaches Rye

Clover/Wildflowers Cantaloupes

Pecans Sunflower

Sod/Grass Seed Watermelons

Other Crops Sweet Corn

Dry Beans Sweet Potatoes

Primary CDL Labels

Corn

Soybeans

Cotton

Rice

Uncultivated CDL Labels

All other labels

Final Training Label List

Corn

Soybeans

Cotton

Rice

Cultivated

Uncultivated

No Crops Growing



29NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

One-hot-encoded Labels
• One-hot-encoding is a method of transforming the label space into 0s and 1s.
• The index where the 1 value is indicates the label type (e.g., a 1 in the first index indicates Cultivated)
• Therefore, the length of the one-hot-encoded label is the number of labels to classify. In our case, the 

length is 6.
• This is necessary if using a Softmax activation function with Categorical Crossentropy loss.

– We will get into the details of these in Part 3.

Our Labels

Uncultivated

Cultivated

No Crops Growing

Corn

Soybeans

Cotton

Rice

No Crops Growing Uncultivated Cultivated Corn Soybeans Cotton Rice

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

One-hot-encoded Labels



Part 2:
Summary



31NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Summary

• Created a customized and highly efficient queue to load data via TensorFlow 
datasets using the Parquet files from Part-1 as inputs.

• Map, shuffle, batch, and prefetch to optimize the performance of the TensorFlow 
dataset with parallelization.
– Use modules like tf.io.decode_raw() to convert the byte strings back to 

useable data.
• Examined some pre-processing steps:

– Split the data into train/val/test splits properly to avoid ”data-leakage” and 
track if the model is overfitting.

– Normalized the data inputs for improved model training stability.
– Bucketed the irregularly-spaced time-series imagery to prepare for model 

training.
– Modified the target variable to align with training goals.



32NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Looking Ahead to Part 3

• Training a 1D-CNN (One-Dimensional – Convolutional Neural Network) to predict 
crop type from Sentinel-2 imagery.

• Monitoring model performance in Databricks using Tensorboard.
• Testing and Visualizing model results.



33NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Homework and Certificates

• Homework:
– One homework assignment
– Opens on March 19
– Access from the training webpage
– Answers must be submitted via Google Forms
– Due by April 1

• Certificate of Completion:
– Attend all three live webinars (attendance is recorded automatically)
– Complete the homework assignment by the deadline
– You will receive a certificate via email approximately two months after 

completion of the course.

https://appliedsciences.nasa.gov/get-involved/training/english/arset-large-scale-applications-machine-learning-using-remote-sensing


34NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Contact Information

Trainers:
• John Just (John Deere)

– JustJohnP@JohnDeere.com

• Erik Sorensen

– SorensenErik@JohnDeere.com

• Sean McCartney

– Sean.McCartney@nasa.gov

• ARSET Website
• Follow us on X (formerly Twitter)!

– @NASAARSET
• ARSET YouTube

Visit our Sister Programs:
• DEVELOP
• SERVIR

https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset
https://twitter.com/NASAARSET?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.youtube.com/user/NASAgovVideo/playlists
https://appliedsciences.nasa.gov/what-we-do/capacity-building/develop
https://www.nasa.gov/mission_pages/servir/index.html


35NASA ARSET – Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions

Questions?

• Please enter your questions in 
the Q&A box. We will answer 
them in the order they were 
received.

• We will post the Q&A to the 
training website following the 
conclusion of the webinar.

https://earthobservatory.nasa.gov/images/6034/pothole-lakes-in-siberia

https://earthobservatory.nasa.gov/images/6034/pothole-lakes-in-siberia


36NASA ARSET – Insert Training Title Here

Thank You! 


	Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions�Part 2: Data Loaders for Training ML Models on Irregularly-Spaced Time-Series of Imagery
	Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions�Overview
	Motivation for Training 
	Training Learning Objectives
	Prerequisites
	Training Outline
	How to Ask Questions
	Large Scale Applications of Machine Learning using Remote Sensing for Building Agriculture Solutions�Part 2: Data Loaders for Training ML Models on Irregularly-Spaced Time-Series of Imagery
	Part 2 – Trainers
	Part 2 Objectives
	Review of Prior Knowledge
	Part 2 Section 1:�About TensorFlow & Data Flow
	TensorFlow
	Data Flow
	Part 2 Section 2:�TensorFlow Data Pipelines
	The Data Pipeline Overview
	Example TensorFlow Dataloader Code
	.map(function)
	Reading Byte Strings with Tensorflow.IO
	Part 2 Section 3:�Preparing Dataset for Model Training
	Train/Val/Test With Time-Series Data
	Train/Val/Test For Crop-Type Prediction
	Normalization
	Bucketing Irregularly-Spaced Time-Series Data
	Results of Bucketing The Data (Discretizing in Time Dimension)
	Scene Classification Layer Filtering
	Modifying Target Variables to Align with Training Goals
	Target Variable Groups Summary
	One-hot-encoded Labels
	Part 2:�Summary
	Summary
	Looking Ahead to Part 3
	Homework and Certificates
	Contact Information
	Questions?
	Slide Number 36

