

EARTH SCIENCE
APPLIED SCIENCES

Quantifying distributional health damages of extreme weather events

Annual Grantee Meeting

Apr 23nd, 2024

Julia M Gohlke, Samarth Swarup, Ben Zaitchik, Ryan Calder, Annie Britton, Saurav Timilisina, Antonia Mendrinos, Balaji Ramesh

Quantification of health damages from climate change

- Benefit cost analysis for climate policy evaluation—a required component of federal regulations
- Health damages are a major contributor to estimated costs, however currently only account for temperature-related mortality

Table 3.1.4: Impact Category Disaggregation of Social Cost of Carbon (SC-CO₂) for 2030 under a 2.0% Near-Term Ramsey Discount Rate (in 2020 dollars per metric ton of CO₂)

Impact category	Damage Module		
	DSCIM	GIVE	Meta-Analysis
Health	\$179	\$104	-
Energy	-\$4	\$10	-
Labor productivity	\$47	-	-
Agriculture	\$4	\$103	-
Coastal	\$3	\$2	-
Total	\$233	\$219	\$238

Project Objectives

- Compare estimates of mortality associated with temperature extremes and flooding across urban and rural areas between 2015-2021.
- Determine contributions of movements outside of home census tract to health damages associated with extreme temperatures and flooding.
- Determine morbidity contributions to health damages associated with extreme temperatures and flooding.

Workflow

Association between Summertime Emergency Department Visits and Maximum Daily Heat Index in Rural and Non-rural Areas of Virginia (2015-2022)

Setting and Data Sources

16,873,213 healthcare visits from Virginia facilities reporting to the Virginia Department of Health syndromic surveillance system (May to September 2015-2022)

Region, rurality, and age-specific estimates of ED visits attributable to extreme heat were produced.

Gridded hourly temperature, humidity, and pressure data

> Climate Zone Classification

> > Rurality

NLDAS2

Köppen

US HHS Rural Health Grants Eligibility Analyzer

Distributed lag non-linear model (DLNM) used to assess healthcare visit association with heat index

Findings

- Healthcare visits started increasing at a maximum daily heat index of ~26°C.
- There are differences in ED visit attributable fractions between rural and non-rural areas.
- Public health interventions tailored to rural areas to mitigate adverse health outcomes from heat exposure are needed.

Synthetic Populations

Environmental Data

PRISM + MetSim

Temperature vs Date 2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01 Hourly heat estimates are generated using Parameter-elevation Regressions on Independent Slopes (PRISM) Model daily data and MetSim to fit a diurnal curve.

32.0

- 20.8

30.4 28.8

Can easily be substituted with other environmental data.

Preliminary Results

- Average weekly temperature, aggregated to Census tracts in Harris County, TX, for the first week of January 2017.
- Aggregation can be done in multiple ways, such as by demographic groups, by different geographies, and by temperature hotspots/coldspots.
- Next step is to relate differences to health outcomes. We have done this recently for flooding exposures during Hurricane Harvey evacuation/sheltering in combination with ED-visit data.

The temperature at which total and renal ED visits increases is lower than for those specifically coded as heat-related illness (HRI)

Flood maps that help to identify flooded areas differ by spatial and temporal resolution, and reporting observed or modelled flood.

AER Flood Map

Spatial resolution: 22 km (enhanced to 90m)

Temporal resolution: Everyday

Dartmouth Flood Observatory Map

Spatial resolution: 200 m Temporal resolution: Single snapshot

Combined DFO and AER flood exposure metric suggests higher rate ratio for gastrointestional-illness related ED

visits

Global Flood mortality models suggest differential mortality rates across impacted countries.

Current ARL-5 Supporting Evidence

- Application components have been integrated into a functioning prototype application system with realistic supporting elements.
 - 3 different ways to estimate affected population in the global model and have evaluated country-level estimates and other covariates for regional level estimation.
 - Additional methods for flood inundation estimation using the Texas dataset.
- The application systems potential to improve the decision-making activity has been determined and articulated (e.g., projected impacts on cost, functionality, delivery time, etc.)
 - Updated mortality estimates for integration into the pyCIAM model
 - We are engaging with Virginia Department of Health stakeholders at an upcoming event at Virginia Tech (Apr 5th).
 - We are scoping a second engagement with EPA NCEE for summer/fall 2024 to update them on our global flood-mortality model.

Presentations and upcoming publications

- Association between Summertime Emergency Department Visits and Maximum Daily Heat Index in Rural and Non-rural Areas of Virginia (2015-2022). Under revision at STOTEN.
- Assessing the Global Threat of Coastal Flooding: A Mortality Risk Model. In preparation
- Poster and symposium presentations at AMS 2024

Publications

Ramesh, B*, Callender, R, Zaitchik, BF, Jagger, M, Swarup, S, & **Gohlke, JM*** (2023). Adverse Health Outcomes Following Hurricane Harvey: A Comparison of Remotely-Sensed and Self-Reported Flood Exposure Estimates. *GeoHealth* 7(4): e2022GH000710.

Crawford, MC, Bukvic, A, Rijal, S, & **Gohlke, JM** (2023). The exposure of vulnerable coastal populations to flood-induced Natech events in Hampton Roads, Virginia. *Natural Hazards*, 1-31.

Brower AE, Ramesh B, Islam KA, Mortveit HS, Hoops S, Vullikanti A, Marathe MV, Zaitchik B, **Gohlke JM**, Swarup S (2023). Augmenting the Social Vulnerability Index using an agent-based simulation of Hurricane Harvey. *Computers, Environment and Urban Systems*, Volume 105, 2023, 102020.

Brower AE, Corpuz B, Ramesh B, Zaitchik B, Gohlke JM and Swarup, S* (2023) Predictors of Evacuation Rates during Hurricane Laura: Weather Forecasts, Twitter, and COVID-19. Weather, Climate, and Society, 15(1), pp.177-193.

Ramesh, B, Jagger, MA, Zaitchik, B, Kolivras, KN, Swarup, S, Deanes, L, Hallisey, E, Sharpe, JD and **Gohlke, JM*** (2022). Flooding and emergency department visits: Effect modification by the CDC/ATSDR Social Vulnerability Index. *International Journal of Disaster Risk Reduction*, 76, p.102986.

Cromar KR*, Anenberg SC, Balmes JR, Fawcett AA, Ghazipura M, **Gohlke JM**, Hashizume M, Howard P, Lavigne E, Levy K, Madrigano J. (2022). Global Health Impacts for Economic Models of Climate Change: A Systematic Review and Meta-Analysis. *Annals of the American Thoracic Society*. 2022 Jan 24. Times Cited: 1

Wang, S, Wu, C, Austin, E, Davis, M, & **Gohlke, JM*** (2022). Healthcare Visits and Summertime Heat Index in Virginia: An Analysis of Syndromic Surveillance Data Collected From 2015-2020. *Journal of Environmental Health*, 84(10).

<u>Ramesh B</u>, Jagger MA, Zaitchik BF, Kolivras KN, Swarup S, Yang B, Corpuz BG, **Gohlke JM*** (2022). Estimating changes in emergency department visits associated with floods caused by Tropical Storm Imelda using satellite observations and syndromic surveillance. *Health & Place*. Mar 1;74:102757.

Ramesh, B, Jagger, MA, Zaitchik, B, Kolivras, KN, Swarup, S, Deanes, L, & **Gohlke, JM*** (2021). Emergency department visits associated with satellite observed flooding during and following Hurricane Harvey. *Journal of Exposure Science & Environmental Epidemiology*, *31*(5), 832-841. Impact Factor: 5.56, Times Cited: 6