

NASA Atmospheric Composition Ground Networks Supporting Air Quality and Climate Applications

Part 4: Introduction to the Tropospheric Ozone Lidar Network (TOLNet) John Sullivan (NASA Goddard Space Flight Center) & Melanie Follette-Cook (NASA Goddard Space Flight Center)

August 20, 2024

Part 4 – Trainers

Dr. Melanie Follette-Cook Project Scientist, ARSET NASA GSFC

Dr. John Sullivan Principal Investigator, TOLNET NASA GSFC

NASA ARSET – NASA Atmospheric Composition Ground Networks Supporting Air Quality and Climate Applications

Part 4 Objectives

By the end of Part 4, participants will be able to:

- Identify the basic characteristics of the TOLNet instruments used by NASA for ground-based active remote sensing of tropospheric ozone.
- Recognize how TOLNet supports air quality and climate applications and complements satellite observations.
- Access relevant TOLNet data for a given location and application purpose.

Network	Туре	Primary Measurands	Number of Sites	Vertical Coverage
AERONET	Passive	Aerosols (Optical, Microphysical, Radiative)	~600 Active	Total Column
Pandora (PGN)	Passive	Trace Gases (Ozone, NO ₂ , Formaldehyde)	168 Official	Total Column, Near-Surface, Lower Tropospheric Profiles

- High levels of ozone in the upper atmosphere (stratosphere) make it difficult to remotely sense ozone in the lower atmosphere (troposphere) from space.
- Pandora instruments also only provide total-column ozone via direct sun observations.

How to Ask Questions

- Please put your questions in the Questions box and we will address them at the end of the webinar.
- Feel free to enter your questions as we go. We will try to get to all of the questions during the Q&A session after the webinar.
- The remainder of the questions will be answered in the Q&A document, which will be posted to the training website about a week after the training.

Part 4: Introduction to the Tropospheric Ozone LiDAR Network (TOLNet)

Overview of Ozone and the TOLNet Instruments

What levels of ozone are in the Earth's atmosphere?

- Ozone (or O_3) in the Earth's atmosphere is mostly located in the stratosphere (~90%) and in the troposphere (~10%).
- The troposphere and stratosphere are divided by a temperature inversion known as the tropopause.
- Generally, the dry atmosphere has this composition:

N₂-78 % O₂-21 % Ar-1 %

• Ozone, rather than being near constant, changes concentrations with altitude.

Stratosphere, ~0-10 ppmv (parts-per-million-vol) Troposphere, ~0-100ppbv (parts-per-billion-vol) 1 ppmv = 1000 ppbv

Credit: <u>Scientific Assessment of Ozone Depletion</u>, 2022

What are common measurement techniques of Ozone?

Satellites provide excellent spatial coverage, very expensive and generally columnar values.

LiDARs provide continuous vertical observations at a fraction of the cost of a satellite mission.

In situ monitoring provides continuous observations at the surface level only.

TOLNet – Tropospheric Ozone LiDAR Network

TOLNet

Tropospheric Ozone LIDAR Network

- Established in 2012
- Active remote sensing of tropospheric ozone profiles
- 8 Instrument Teams (Operating 12 LiDARs):
 - NASA JPL, LaRC, GSFC
 - NOAA Chemical Sciences Laboratory
 - Environment & Climate Change Canada
 - University of Alabama Huntsville, City College of New York, Hampton University
- Modeling (Ames) and Data Center (NASA LaRC/ASDC)

NOAA CSL

ARC

CCNY

Hampton U.

GSFC LaRC

What are the major components to a TOLNet LiDAR system?

TOLNet operates in the Ultra-Violet (UV) region.

Differential Absorption Lidar (DIAL)

TOLNet

Wavelength (UV Region)

TOLNet uses a Differential Absorption Lidar (DIAL) Technique.

Return Signal (P)

• The gas concentration profile of ozone N(R) is then calculated by

$$N(R) = \frac{1}{2 \Delta \sigma \Delta R} \ln \left(\frac{P_{off}(R + \Delta R)}{P_{off}(R)} \frac{P_{on}(R)}{P_{on}(R + \Delta R)} \right)$$

• P is power at R distance from laser

General Benefits of TOLNet LiDAR

- Obtain profiles of ozone, rather than a total column amount
- Generate your own light source, so both daytime and nighttime observations are possible
- Can be nearly continuous or as needed to characterize ozone events

What are some examples of transportable TOLNet LiDARs?

NOAA TOPAZ (Tunable Optical Profiler for Aerosols and oZone)

These larger, trailer-based, transportable systems offer an ozone chemistry 'lab on wheels.'

More info on **TOLNet website**!

NASA LaRC LMOL (Langley Mobile Ozone LiDAR)

NASA GSFC TROPOZ (TROPospheric OZone LiDAR)

Introducing Our New Small Ozone LiDAR (SMOL)

• These compact and portable systems (developed at NASA's JPL Table Mountain Facility) offer the ability to provide ozone profiles to the community at lower cost and with less restrictive sampling locations.

NASA ARSET – NASA Atmospheric Composition Ground Networks Supporting Air Quality and Climate Applications

TOLNet Applications and Uses

Applications and Uses of TOLNet Data

- 1. Observe high-resolution planetary boundary layer O₃ (examples in the following slides)
- 2. Evaluate air-quality forecast and chemical transport models
- 3. Study the atmospheric structure for evaluation of current and future satellites (**next steps in prep for TEMPO**)

TOLNet

TEMPO Tropospheric NO₂ (Not Ozone!)

Credit: NASA GSFC Science Visualization Studio

Deployment Locations

Location	Mode	Instrument Group Name	Date Range	Latitude	Longitude
Albuquerque Fiesta Park NM	Campaign	NASA JPL SMOL-1	2023-10-11 - 2023-10-15	35.19	-106.56
Cabauw	Campaign	NASA JPL SMOL-1	2024-05-22 - 2024-06-09	51.97	4.93
Cabauw	Campaign	NASA GSFC	2019-09-12 - 2019-10-02	51.97	4.93
Fort Mackay	Campaign	ECCC	2016-11-04 - 2019-09-23	57.19	-111.62
Guilford YCFS CT	Campaign	NOAA ESRL/CSL	2023-07-04 - 2023-08-14	41.25	-72.75
Huntsville AL	Campaign	UAH	2022-07-08 - 2022-07-10	30.27	-88.12
Kenosha WI	Campaign	UAH	2023-07-18 - 2023-08-16	42.50	-87.81
La Porte TX	Campaign	NASA GSFC	2021-08-11 - 2021-09-28	29.67	-95.06
Langley Research Center VA	Campaign	NASA LaRC	2018-01-24 - 2024-07-05	37.09	-76.38
Pasadena JPL CA	Campaign	NASA JPL SMOL-1	2023-06-25 - 2023-09-07	<mark>34.1</mark> 9	- <mark>1</mark> 18.19
San Bernardino Calstate CA	Campaign	NASA JPL SMOL-2	2023-06-23 - 2023-12-16	34.19	-117.31
Sherwood Island CT	Campaign	NASA LaRC	2018-07-12 - 2023-08-26	<mark>41.1</mark> 2	-73.31
University Of Houston Moody Tower TX	Campaign	NASA LaRC	2021-08-26 - 2021-09-27	29.72	-95.31
Beltsville MD	Routine	NASA GSFC	2015-06-10 - 2022-07-28	39.06	-76.88
Boulder CO	Routine	NOAA ESRL/CSL	2018-02-08 - 2023-10-23	40.00	-105.25
Goddard Space Flight Center MD	Routine	NASA GSFC	2015-02-03 - 2024-06-25	38.97	-76.81
Huntsville AL	Routine	UAH	2017-07-31 - 2023-04-20	34.72	-86.62
New York NY	Routine	CCNY	2023-06-01 - 2024-07-11	40.81	-73.94
Table Mountain CA	Routine	NASA JPL TMTOL	2000-01-04 - 2024-07-10	34.38	-117.69

TEMPO Tropospheric NO₂ (Not Ozone!)

Credit: NASA GSFC Science Visualization Studio

General Benefits of TOLNet LiDAR

- Obtain profiles of ozone, rather than a total column amount
- Generate your own light source, so both daytime and nighttime observations are possible
- Can be nearly continuous or as needed to characterize ozone events

Example Case Study: July 28, 2023

22

Using Multiple Ground-Based Networks to Characterize Pollution Events

- Using AERONET retrievals, we can better characterize the pollution event that occurred at the Flax Pond, NY site.
- Increases in AOD occurred during the same times as the increase in boundary layer ozone observed by TOLNet. Combining these and other NASA networks can aid in understanding transport patterns.

Multiple TOLNet LiDARs During Campaigns – CA

Data Courtesy: TOLNet/TMF JPL Team

- **TMTOL** is a fixed high performance ozone LiDAR located at the JPL Table Mountain facility.
- **SMOL-1** was deployed at JPL Pasadena during AEROMMA, STAQS, and early TEMPO validation efforts. Pasadena exhibits a strong ozone diurnal cycle due to titration.
- **SMOL-2** is deployed to CSUSB. San Bernardino county has the largest number of ozone exceedances in the US.

Multiple TOLNet LiDARs During Campaigns – CA

- **TMTOL** is a fixed high performance ozone LiDAR located at the JPL Table Mountain facility.
- **SMOL-1** was deployed at JPL Pasadena during AEROMMA, STAQS, and early TEMPO validation efforts. Pasadena exhibits a strong ozone diurnal cycle due to titration.
- **SMOL-2** is deployed to CSUSB. San Bernardino county has the largest number of ozone exceedances in the US.

Data Courtesy: TOLNet/TMF JPL Team

Accessing TOLNet Data: TOLNet Website/Archive & Python Toolbox

Accessing TOLNet Data – Website

2024 Website Roll-Out Significance:

- ✓ Easier data discovery and data management for end users
- ✓ Graphing capability/near-real time data viewing
- ✓API for automation, future interface, and interoperability
- ✓More functional search features and data sub-setting

Tropospheri	c Ozone Lida	r Network (TOI	_Net) Home Do	wnload Publications	s Team Upload Area	Contact API Us	Welcom Michael
Filter by:	Clear Filters					Download Sele	ected Files
V Date Range (LIT	-C)	Select Data				Total files av	ailable: 51
	0)	Insturment	Group 🔶 Data Dat	te (UTC) 🔶 Upload Date	e 🔶 Product Type	🔶 File Type	Info
Data Date is after		NASA J	IPL 2020-12-2	25 2021-04-01	Other	ASCII	0 ^
No date sele	ected	NASA J	IPL 2020-12-2	25 2021-04-01	Other	ASCII	0
Data Date is before		NASA J	IPL 2020-12-2	25 2021-04-01	Other	ASCII	0
		□ NOAA	CSL 2020-12-2	24 2021-04-01	Gridded	Generic HDF	0
No date sele	cted	□ NOAA	CSL 2020-12-2	24 2021-04-01	Gridded	Generic HDF	0
	_	□ NOAA	CSL 2020-12-2	24 2021-04-01	Gridded	Generic HDF	0
✓ Instrument Grou	ip 🚯		CSL 2020-12-2	22 2021-04-01	CALVAL	ASCII	0
- E000			CSL 2020-12-2	22 2021-04-01	CALVAL	ASCII	0
NASA GSFC		□ NOAA	CSL 2020-12-2	22 2021-04-01	CALVAL	ASCII	0
NASA JPL		NASA (GSFC 2020-05-1	15 2021-04-01	Surface	Generic HDF	0
NASA LaRC NOAA CSL		NASA (GSFC 2020-05-1	15 2021-04-01	Surface	Generic HDF	0
UAH	-	NASA (GSFC 2020-05-1	15 2021-04-01	Surface	Generic HDF	0
	_	NASA (GSFC 2020-05-1	15 2021-04-01	CLIM	ASCII	0
✓ Product Type	i	UAH	2020-05-1	15 2021-04-01	CLIM	HDF GEOMS	0
- O3Lidar		UAH	2020-05-1	15 2021-04-01	CLIM	HDF GEOMS	0
HIRES		NASA (GSFC 2020-05-1	15 2021-04-01	Surface	Generic HDF	0
CALVAL		NASA (GSFC 2020-05-1	15 2021-04-01	Surface	Generic HDF	0
Gridded		NASA (GSFC 2020-05-1	15 2021-04-01	CLIM	ASCII	0
Legacy		NASA (GSFC 2020-05-1	15 2021-04-01	Surface	Generic HDF	0
Other		□ NASA (GSFC 2020-05-1	15 2021-04-01	CLIM	ASCII	0
	· · · · · · · · · · · · · · · · · · ·	UAH	2020-05-1	15 2021-04-01	CLIM	HDF GEOMS	0
✓ File Types G		ECCC	2020-05-0	01 2021-04-01	O3Lidar	HDF GEOMS	0
		□ ECCC	2020-05-0	01 2021-04-01	O3Lidar	HDF GEOMS	0

Accessing TOLNet Data – Data Calendar View

2024 Website Roll-Out Significance:

- ✓ Easier data discovery and data management for end users
- ✓ Graphing capability/near-real time data viewing
- ✓API for automation, future interface, and interoperability
- ✓More functional search features and data sub-setting

Accessing TOLNet Data – Selecting a Specific Day of Data

2024 Website Roll-Out Significance:

- ✓Easier data discovery and data management for end users
- ✓Graphing capability/near-real time data viewing
- ✓API for automation, future interface, and interoperability
- ✓More functional search features and data sub-setting

Accessing TOLNet Data – TOLNet Toolbox (Python Notebook)

This can be accessed by going to the **ASDC Data and User** Services Github:

 <u>https://github.com/nasa/ASDC_Data_and_User_Service</u> <u>s/tree/main/TOLNet</u>

Then by opening up 'TOLNet API Examples.ipynb':

• <u>https://github.com/nasa/ASDC_Data_and_User_Service</u> s/blob/main/TOLNet/TOLNet_API_Examples.ipynb

This can be viewed in the native browser or downloaded to use in other environments (e.g., within Anaconda/Jupyter).

Accessing TOLNet Data – TOLNet Toolbox (Python Notebook)

Accessing TOLNet Data – Calling the API for Data

Example Case Study

On July 12th, 2023, the air quality surrounding the Goddard Space Flight Center was particularly poor, with an ozone index of about

100(Unhealthy for sensitive groups).

We will use the TOLNet API to graph the ozone data at GSFC during this time.

Then, we import it with python.

```
In [1]:
```

from tolnet import TOLNet

tolnet = TOLNet() # Creates an object that retrieves data from the API and stores it

We only want data from the GSFC area around June 12th. As such, we filter accordingly:

In [2]:

date_start = "2023-07-11"
date_end = "2023-07-13"
group = [2] # List of instrument group IDs to filter by. We only want GSFC(ID=2), so this list only contains 2.
product_ID = [4] # Filter for high-resolution files only

tolnet.import_data(min_date=date_start, max_date=date_end, instrument_group=group, product_type=product_ID)

Accessing TOLNet Data – Generating a Curtain Plot

Accessing TOLNet Data – Polling All TOLNet Data Given a Date Range

Accessing TOLNet Data – Customizing Plots

• Graph from tolnet_curtains() can be customized

xlims takes a list of two dates in ISO 8601 Format(YYYY-MM-DD), like this: ['2023-08-05', '2023-08-08'].
data.tolnet_curtains(xlims=['2023-08-08', '2023-08-09'], title="Cropped Graph(X-axis)")

data.tolnet_curtains(ylims=[0, 2], title="Cropped Graph (Y-axis)")

data.tolnet_curtains(xlabel="Sample X Label", ylabel="Sample Y Label", title="Axis labelling demo")

Accessing TOLNet Data – Comparing with GEOS-CF Outputs


```
# Copy of previous query for sample data
[20]:
      from tolnet import TOLNet
      tolnet = TOLNet()
      params = {"min_date": "2023-08-01",
                 "max_date": "2023-08-15",
                 "product type": [4],
                "instrument_group": [2],
                 "processing type": [1],
                 "GEOS CF": True
```

data = tolnet.import_data(**params).tolnet_curtains()

Datetime (UTC)

2023-Aug

Accessing TOLNet Data – Website or Python Toolbox

2024 Website :

- ✓ Easier data discovery and data management for end users
- ✓Graphing capability/Near-Real Time data viewing
- ✓API for automation, future interface, and interoperability
- More functional search features and data sub-setting

2024 TOLNet Toolbox:

- ✓ Allow for multiple lidars to be quickly plotted with a simple call
- ✓ Future work will be developing analysis tools to complement website
- ✓Visual comparisons to GEOS-CF and future statistics can be generated

TOLNet Website

<u>TOLNet Toolbox</u>

Acknowledgements

7th Annual TOLNet Science Team Meeting Silver Spring, MD 2019

- NASA HQ- Tropospheric Composition Program
- TOLNet Scientists and Station Leads
- Michael Newchurch/UAH TOLNet Chief Scientist
- NASA ASDC and Data Team

Part 4: Summary

- Discussed the basic characteristics of the ozone in the atmosphere and available techniques to measure vertical profiles of ozone
- Simple introduction to Differential Absorption LiDAR (DIAL), which is used for ozone LiDARs with TOLNet
- Introduced a few of the major hardware components and sizes of TOLNet LiDARs
- Recognize how TOLNet supports air quality: We described a case study where TOLNet LiDARs were able to characterize high ozone in two domains (New York and California)
- Access relevant TOLNet data for a given location and application purpose by using the website and the TOLNet Toolbox Python Notebook

Network	Туре	Primary Measurands	Number of Sites	Vertical Coverage
AERONET	Passive	Aerosols (Optical, Microphysical, Radiative)	~600 Active	Total Column
Pandora (PGN)	Passive	Trace Gases (Ozone, NO ₂ , Formaldehyde)	168 Official	Total Column, Near-Surface, Lower Tropospheric Profiles
TOLNet	Active	Trace Gases (Ozone Vertical Profiles)	12 (3 Fixed, 9 Transportable)	Tropospheric Profiles (0-15 km)

NASA ARSET – NASA Atmospheric Composition Ground Networks Supporting Air Quality and Climate Applications

Looking Ahead to Part 5

- We will learn about the Micro-Pulse LiDAR Network (MPLNET).
- MPLNET is another active remote sensing network, this time focused on clouds and aerosols.

Homework and Certificates

TOLNet

- Homework:
 - One homework assignment
 - Opens on 22/08/2024
 - Access from the <u>training webpage</u>
 - Answers must be submitted via Google Forms
 - Due by 05/09/2024
- Certificate of Completion:
 - Attend all five live webinars (attendance is recorded automatically)
 - Complete the homework assignment by the deadline
 - You will receive a certificate via email approximately two months after completion of the course.

Contact Information

Trainers:

- John Sullivan
 - john.t.sullivan@nasa.gov
 - Follow us on Twitter!
 - <u>@NASA_TOLNET</u>
- Melanie Follette-Cook
 - <u>melanie.cook@nasa.gov</u>

ARSET Website

- Follow us on Twitter!
 - <u>@NASAARSET</u>
- ARSET YouTube

Visit our Sister Programs:

- DEVELOP
- SERVIR

Resources

- AERONET Website
 - <u>AERONET Data Synergy Tool</u>
 - <u>AERONET Map Explorer</u>
- Pandora Website
 - Pandonia Global Network
 - Pandonia Network Data
- <u>TOLNet Website</u>
 - <u>Data Calendar</u>
 - TOLNet Data API 'TOLNet Toolbox'

Thank You!

NASA ARSET – NASA Atmospheric Composition Ground Networks Supporting Air Quality and Climate Applications