

Introduction to PACE Hyperspectral Observations for Water Quality Monitoring Part 3: Access and Visualization of PACE/OCI Data using Python/Jupyter Notebook Software ARSET Instructor: Amita Mehta Guest Instructors: Anna Windle (NASA GSFC/SSAI) & Carina Poulin (NASA GSFC/SSAI)

October 09, 2024

Training Outline

Homework

Opens October 9 – Due October 24 – Posted on Training Webpage

A certificate of completion will be awarded to those who attend all live sessions and complete the homework assignment(s) before the given due date.

NASA ARSET - Introduction to PACE Hyperspectral Observations for Water Quality Monitoring

Part 2 Review

- Applications Program: Inform decision making activities in water resources, fisheries, and ecosystem areas.
- Examples of PACE Early Adopters: Aquaculture Site Selection, Enhanced Cholera Risk Models, <u>Hypercoast</u> Water Quality Monitoring for Lakes and Estuaries.
- Description and access to multiple levels of PACE data: <u>PACE Data Access Landing</u> <u>Page</u>
- Data Access: Through <u>OB.DAAC</u> and <u>Earthdata</u>.
- <u>NASA Worldview</u>: Useful for near real-time PACE true-color images and Chlorophyll–a concentration data visualization.
- Demonstration of SeaDAS: Useful for PACE data analysis and visualization.

Part 3 Objectives

275

By the end of this training, participants will be able to:

- Access OCI Remote Sensing Reflectances and Level-2 and -3 Water Quality Parameters from Earthdata using Open-Source Python Software/Jupyter Notebooks
- Visualize OCI Remote Sensing Reflectances and Level-2 and -3 Water Quality Parameters using Open-Source Python Software/Jupyter Notebooks
- Identify Steps to Customize the Provided Jupyter Notebook Software for Other Areas of Interest and Time Frames

How to Ask Questions

- Please put your questions in the Questions box and we will address them at the end of the webinar.
- Feel free to enter your questions as we go. We will try to get to all of the questions during the Q&A session after the webinar.
- The remainder of the questions will be answered in the Q&A document, which will be posted to the training website about a week after the training.

Part 3 – Trainers

Anna Windle Postdoctoral Fellow NASA GSFC, SSAI

Carina Poulin Scientific Designer NASA GSFC, SSAI

Access and Visualization of PACE/OCI Data using Python/Jupyter Notebook Software Overview

PACE: A New Era for Water Quality Monitoring

- PACE Launch: February 8, 2024
- New Data Opportunities:
 - Hyperspectral Ocean Color Data
 - Hyper- and Multi-Spectral Polarimetry Data
- New data challenges!

Orientation to Earthdata Cloud Access

Where is PACE data located?

• In the cloud!

- Specifically, an AWS cloud that is physically in Oregon.
- This is called the AWS us-west-2 region.
- PACE data is located in AWS Cloud Data Storage (S3) Buckets in this cloud.

How can I access PACE data that's in the cloud?

Three options:

- 1. Earthdata Search OB.DAAC portal
- 2. OB.DAAC Level 3 & 4 Browser
- 3. OB.DAAC File Search

Note: the OB.DAAC Level 1 & 2 browser does not support access to PACE data

11

Earthdata Search OB.DAAC Portal

- 1. Navigate to: https://search.earthdata.nasa.gov/search
- 2. Top left, click "Browse Portals"
- 3. Click on "OBDAAC"
- Filter Instruments to "OCI" 4.

PACE

苗 121

Features

Platforms

Search Results (20 Collections)

PACE OCI Level-2 Regional Apparent Optical Properties - Near Realtime (NRT) Data, version 2.0

Shortname -----> PACE_OCI_L2_AOP_NRT Version 2.0

Related URLs

View More Info 🛛

Temporal Extent

2024-02-25 ongoing

GIBS Imagery Projection Availability **None**

Science Keywords

EARTH SCIENCE ATMOSPHERE ATMOSPHERIC RADIATION

-		4 S'	T.F
	<u> </u>		

Bounding	Rectangle:	(90.0°,	-180.0°,	-90.0°,	180.0°)	
----------	------------	---------	----------	---------	---------	--

OBPG PROCESSOR	NASA/GSFC/SED/ESD/GCDC/OB.DA AC DISTRIBUTOR ARCHIVER				
center.	sdps@oceancolor.gsfc.nasa.gov Fax: 301-286-0268				

The Ocean Biology DAAC produces near real-time (quicklook) pr For Developers
AWS Cloud
Available for access in-region with AWS Cloud
Region
us-west-2
Bucket/Object Prefix
s3://ob-cumulus-prod-public/

AWS S3 Credentials

Get AWS S3 Credentials <a>Documentation

NASA ARSET - Introduction to PACE Hyperspectral Observations for Water Quality Monitoring

Data of Interest

OBDAAC (Ocean Biology Distributed ... 20 Matching Collections

Il Le	ave Portal					
based of the line			Showing 20 of 20 matching collections	i≣+ Export	l≞ Sort	i≣Vie
Search for	E	æ	PACE OCI Level-2 Regional Apparent Optical Pritime (NRT) Data, version 2.0 23,066 Granules 2024-02-25 ongoing Earth	operties - Near	Real-	() No image available
	🚓 Browse Portals Ø		The Ocean Biology DAAC produces near real-time (que the best-available combination of ancillary data from	uicklook) product meteorological a	ts using ind	
▼ Filter C	ollections	-	GEOSS + PACE_OCI_L2_AOP_NRT v2.0 - NASA/GSFC/SEI	/ESD/GCDC/OB.D	DAAC 【	+
Keywords		~				
Platforms		~	23,072 Granules 2024-02-25 ongoing Eartho	ata Cloud		No image available
Instrumen	nts 1 Selected	^	The primary sensor aboard the PACE spacecraft is th Instrument (OCI). It is a highly advanced optical spec	e Ocean Color trometer that will	be	
HARP	2	6				
Hawk8	Eye	2	GEOSS · PACE_OCI_LIB_SCI V2 - NASA/GSFC/SED/ESD/C	CDC/OB.DAAC		
MERIS	; S	26 80	PACE OCI Level-3 Global Mapped Chlorophyll (HL) - NRT Dat	a,	0
	-	20	528 Granules 2024-02-25 ongoing Earthdata	Cloud 0 1 to	4 days	No image available
OLCI		55	The Ocean Biology DAAC produces near real-time (qu	icklook) product	ts using	
SeaWi	FS	22	the best-available combination of ancillary data from	meteorological a	nd	
SPEXC	one	4	GEOSS + PACE_OCI_L3M_CHL_NRT v2.0 - NASA/GSFC/S	ED/ESD/GCDC/OB	DAAC	
VIIRS		102				
Organizat	ions 1 Selected	~	PACE OCI Level-2 Regional Biogeochemical Pro time (NRT) Data, version 2.0	perties, Near R	eal-	
Projects			23,068 Granules 2024-02-25 ongoing 🕅 📥 🛚	arthdata Cloud		available
Processin	g Levels	~	The Oce Looking for more collections? Le	ave the OBDAA	C Portal	

272

Download Data

Selecting a file highlights the granule on the map.

Analyze Data in the Tool of Your Choice

Can pull these local files into whatever you're used to analyzing satellite data with – Python, Matlab, R, SeaDAS, etc.

Or...

NASA ARSET - Introduction to PACE Hyperspectral Observations for Water Quality Monitoring

earthaccess Python Library

- Easy way to search, download, or stream NASA Earth science data using a few lines of code.
- earthaccess is under active development.
 - Feel free to submit Issues on their Github if something is not working or you have a suggestion.
- Anyone can contribute! Check out the <u>Contributing Guide</u>.
- This is what we will use to access PACE data in the Jupyter Notebook tutorials.

earthaccess

A Python Library for NASA Earthdata

Two Ways to Run Jupyter Notebooks

- 1. Locally Following Instructions Listed in Prerequisites
 - Using the predefined environment.yml to install JupyterLab and required Python libraries
- 1. In the Cloud
 - If you have access to an Elastic Compute Cloud (EC2), such as a cloud-based JupyterHub
 - Examples: JupyterHubs Maintained by Openscapes, CryoCloud, NASA Goddard's Open Science Studio
 - EC2 needs to be running on AWS us-west-2 region
 - See <u>NASA Earthdata Cloud Cookbook</u> for more information on cloud computing

Since not everyone has equal access to an EC2, we will be demonstrating how to run the notebooks locally.

Tutorial of Earthdata Cloud Access

Tutorial Lead: Anna Windle, Postdoc NASA GSFC Ocean Ecology Lab

Visualization of Optical Remote Sensing Data for Water Quality Monitoring

PACE Data Products

PACE Data Products Table

Available		Coming soon!		Currently implementing and evaluating		No approach currently identified
		Calibr Calibrated and resoloca	rated Radiometry an	d Polarimetry arimetry as observed at sensor.		
Product		Description and Use	U	nits Availability	Status	Additional Info
	Spectral radiance observ	ed at the top of the atmosphere.	W m ⁻² um ⁻¹ sr ⁻¹	Level-18 1-km at nadir: daily - Level-1C: daily	Provisional	Level-1C draft data format and examples
of atmosphere radiances and polarimetry from SPEXone	Spectral radiance and po viewing angles.	slarimetry observed at the top of the atmosphere, for all sensor	Various	Level-18 TBD; daily - Level-1C; daily	Provisional	Level-1C draft data format and examples
pol-atmosphere radiances and polarimetry from HARP2	Spectral radiance and po viewing angles.	larimetry observed at the top of the atmosphere, for all sensor	Various	Level-18 TBD; daily - Level-1C; daily	Provisional	Level-1C draft data format and examples
		Ocean Bio-optical and biogeochemical	Properties to be Pro	oduced by OCI constituents in the sunlit upper ocean.		
Product	_	Description and Use	U	nits Availability	Status	Additional Info
	Spectral color of the oce into algorithms to retriev phytoplankton, non-alga 2.5-nm steps from 350 to	an in the ultraviolet-to-near infrared spectral range. Used as input re information about colored dissolved organic matter, I particles, and other aquatic constituents. Provided in continuous o 712.5-nm with a resolution (bandwidth) of 5-nm.	sr' ¹	Level-2 1-km at nadir; daily - Level-3 4-km; daily, 8- day, monthly, annual	Provisional	ATBD SAT members: Boss, Zhai, Krotkov, Chowdhary, Stam In situ measurement protocols
	Effective reflectance of ti downstream ocean data reflectance.	he Earth's surface as observed by OCI. Used as an input to products. Includes inland waters as well as ocean surface	unitless	Level-2 1-km (at nadir), daily - Level-3 spatial resolution TBD; daily, 8-day, monthly	Test	Current product: L2gen; investigating MAIAC (Lyapu
	An optical water classific range Rrs wavelengths (4	ation index reported as the weighted harmonic mean of visible- 100-700 nm)	nm	Level-2 1-km at nadir; daily - Level-3 4-km; daily, 8- day, monthly, annual	Test	ATBD
	Spectral diffuse attenuat 350 and 700 nm. Provide	ion of downwelling irradiance at multiple wavelengths between es indices of water clarity and light penetration.	m ⁻¹	Level-2 1-km at nadir; daily - Level-3 4-km; daily, 8- day, monthly, annual	Test	ATBD SAT members: Boss, Stramski, Odermatt In situ measurement protocols
	Spectral absorption coef between 350 and 700-nr and community composi	ficients for total phytoplankton absorption at multiple wavelengths m. Provides information on phytoplankton physiology, abundance, tion.	m*1	L <u>evel-2</u> 1-km at nadir; daily - <u>Level-3</u> 4-km; daily, 8- day, monthly, annual	Provisional	ATBD SAT members: Twardowski, Stramski, Shuchman, Pa Barnes, Stamnes, Chowdhary In situ measurement protocols
en algal particle plus dissolved organic matter absorption	Spectral absorption coeff multiple wavelengths be concentrations of the dis component of the partic	ficients for non-algal particulates and dissolved organic matter at tween 350 and 700-nm. Provides information on the solved component of organic carbon and the detrital (non-algal) ulate assembly.	m-1	Level-2 1-km at nadir; daily - <u>Level-3</u> 4-km; daily, 8- day, monthly, annual	Provisional	ATBD SAT members: Twardowski, Stramski, Barnes, Stamm In situ measurement protocols
momophoric dissolved organic matter absorption coefficients	Spectral absorption coeff between 350 and 700-nr component of organic ca	ficients for dissolved organic matter at multiple wavelengths m. Provides information on the concentration of the dissolved irbon.	m ⁻¹	TBD	Test	SAT member: Stramski In situ measurement protocols
ope coefficients of chromophoric dissolved organic matter	Absorption spectral slop wavelength ranges: 275- contribution of land-deri marine-derived dissolved	e coefficients of chromophoric dissolved organic matter for multiple 295, 350-400, 380-600 nm. Provides information on the ved dissolved organic matter, relative contribution of land-versus d organic matter, and as a relative measure of solar photobleaching.	nm ⁻¹	TBD	Test	SAT member: Stramski In situ measurement protocols
on-algal particle matter absorption coefficients	Spectral absorption coeff between 350 and 700 nr particulate components.	ficients for non-algal particulate matter at multiple wavelengths n. Provides information on the concentration of non-phytoplankton	nm ⁻¹	TBD	Test	SAT member: Stramski In situ measurement protocols
inticulate matter absorption coefficients	Spectral absorption coef and 700 nm. Provides inf column.	ficients for particulate matter at multiple wavelengths between 350 formation on the concentration of particulate matter in the water	nm ⁻¹	TBD	Test	SAT member: Stramski In situ measurement protocols
	Spectral backscattering o wavelengths between 35 in the ocean and a proxy	of the light associated with particulate material, at multiple 50-700 nm. Provides an indicator of the concentration of particules indicator of particulate carbon concentrations.	m ⁻¹	Level-2 1-km at nadir; daily - Level-3 4-km; daily, 8- day, monthly, annual	Provisional	ATBD SAT members: Twardowski, Stramski, Shuchman, Pa Stamnes, Chowdhay, Zhang, Odermatt
	Light leaving the surface an indicator of phytoplar	ocean due to the sun induced chlorophyll fluorescence. Provides nkton physiology (health?).	W m ⁻² um ⁻¹ sr ⁻¹	Level-2 1-km at nadir; daily - Level-3 4-km; daily, 8- day, monthly, annual	Test	ATBD SAT member: Westberry
	The amount of sunlight t spectral range, that reac light to convert inorganic understanding the ocean	hat is useful for photosynthesis, defined here as the 400-700 nm hes the surface of the ocean over a day. As phytoplankton require c carbon to organic carbon, PAR provides a critical parameter for hic carbon cycle.	Einsteins m ⁻¹ d ⁻¹	<u>Level-2</u> 1-km at nadir; daily - <u>Level-3</u> 4-km; daily, 8- day, monthly, annual	Provisional	ATBD SAT member: Boss
	Near surface concentrati	ion of the photosynthetic pigment chlorophyll-a. Provides proxies	mg m ⁻³	Level-2 1-km at nadir: daily - Level-3 4-km: daily. 8-	Provisional	ATBD

PACE Data Products – What to Know About Sensors

What You Should Know About PACE Data

This is a summary of the general information one needs to use PACE data. See the complete release notes for the most current PACE data on the OB.DAAC website.

Orbit

The PACE satellite is in a Sun-synchronous polar orbit, with a local Equatorial solar crossing time of 1 pm for the ascending (daytime) note. The descending orbital node happens during local nighttime, and none of PACE's sensors collect science data at night.

PACE Instruments

HARP-2 Hyper Angular Rainbow Polarimeter

Spectro-Polarimeter for Planetary EXploration

OB.DAAC Data processing levels

Level 1A

Level-1B

Raw instrument data and spacecraft telemetry in netCDF4

Calibrated & geolocated instrument data

Calibrated, geolocated, and co-registered to a common grid

Level-1C

Level-2

Derived geophysical

science data products

Level-3

Temporally and spatially composited (binned and mapped) global products Level-4

Geophysical products derived from combined Level-3 inputs and/or models

Product maturity levels

PACE Data Products – What to Know About Data Levels

What You Should Know About PACE Data

OB.DAAC Data processing levels

Level 1A	Level-1E	3	Level-1C	Level-2	Level-3		Level-4
Raw instrument data and spacecraft telemetry in netCDF4	v instrument data and cecraft telemetry in Calibrated & geolocated instrument data		Calibrated, geolocated, and co-registered to a common grid	Derived geophysical science data products	Temporally and spatially composited (binned and mapped) global products		Geophysical products derived from combined Level-3 inputs and/or models
Product maturit	ty level	s					
Standard		Provisional		Test		Diagn	ostic
Products are produced by a algorithm that has communiconsensus and have been validated.	an ity	Results have be are in family wit products or othe expectation, but been validated	een reviewed and h heritage data er basis of t which have not yet and may still contain	Results have not yet been by algorithm developers be known to have substation implementation that are investigation.	t been reviewed Products that are pers and or may support analysis of ubstantial errors in behavior, but that t are under intended for scien		cts that are produced to rt analysis of algorithm rior, but that are not led for science.

Known data issues

PACE is already providing high-quality data. However, some issues have to be noted before using it. Some particular bands, influenced by instrument or atmospheric characteristics, should be avoided for the moment. Other issues affect the entire dataset, and some events affect data availability. See below for details.

Reference spectra (for indicative purposes)

significant errors.

PACE Data Products – What to Know About Bands

What You Should Know About PACE Data

Problematic bands

Hover over the bands to get more information about the issues. The ocean normalized surface reflectance (rhos) and atmosphere transmittance spectra are shown as a reference.

PACE Data Products – What to Know About Events Affecting Data

What You Should Know About PACE Data

Some SWIR bands have missing pixels on either edge of the swath in L1B files. This is due to the fact SWIR have a different detector and are not registered to OCI's CCD bands. See L1A User Guide for more technical details.

Bands affected

on western edge of swath

on eastern edge of swath

PACE Data Visualization Examples for Today

Now that you know more about PACE data, you are ready to visualize it.

In the following Jupyter Notebook you will make:

- An Easy Global Chlorophyll-a Map
- A Map of the Global Oceans in Quasi True Color
- A Full Rrs Spectra from Global Oceans
- A Water Quality Parameter Map of a Specific Area

Acknowledgements

Ian Carroll

Research Scientist

NASA GSFC, UMBC

NASA ARSET – Introduction to PACE Hyperspectral Observations for Water Quality Monitoring

Training Summary

PACE Sensors

- PACE data products are available for oceans/estuaries, atmosphere, and land from PACE-OCI, HARP2, and SPEXone.
- OCI Observations are useful for Water Quality Applications.
- HARP2 and SPEXone will aid in atmospheric correction.

PACE Ocean Color Advances and Limitations

Advancements:

- Hyperspectral from 315 nm to 895 nm
- Spectral resolution of 5 nm bandwidths for Hyperspectral range
- Spectral sampling of 1.25 or 2.5 nm for Hyperspectral range (184 bands)
- Amazing signal to noise ratio even for 5 nm bandwidths
- High UV sensitivity from ~340 nm
- 9 Short-Wave Infrared (SWIR) bands for atmospheric correction including turbid waters (ocean sensitive)
- Nearly daily global coverage

Limitations:

 Spatial resolution of ~1.1 km constrains use within inland and near-shore waters and near ice floes

Challenges:

- Lack of verified hyperspectral algorithms
- Need for more comprehensive hyperspectral field measurements

PACE Ocean Color Data Products, Access, and Analysis

- Multiple Levels of PACE Data:
 - PACE Data Access Landing Page
- Data Access:
 - <u>OB.DAAC</u> and <u>Earthdata</u>
- <u>NASA Worldview</u>:
 - Useful for near real-time PACE true-color images and Chlorophyll–a concentration data visualization.
- SeaDAS:
 - Useful for PACE data analysis and visualization.

Product	L2 Suite	Description and Use	Units	Availability	Status	Additional Info
Spectral top-of-atmosphere radiances from OCI	N/A	Spectral radiance observed at the top of the atmosphere.	W m ⁻² um ⁻¹ sr ⁻¹	<u>Level-1B</u> 1-km at nadir; daily - <u>Level-1C;</u> daily	Provisional	Level-1C draft data format and examples
Spectral top-of-atmosphere radiances and polarimetry from SPEXone	N/A	Spectral radiance and polarimetry observed at the top of the atmosphere, for all sensor viewing angles.	Various	Level-1B TBD; daily - Level-1C; daily	Provisional	Level-1C draft data format and examples
Spectral top-of-atmosphere radiances and polarimetry from HARP2	N/A	Spectral radiance and polarimetry observed at the top of the atmosphere, for all sensor viewing angles.	Various	Level-1B TBD; daily - Level-1C; daily	Provisional	Level-1C draft data format and examples

Ocean Properties to be Produced by OCI Bio-optical and biogeochemical properties of seawater constituents in the sunfit upper ocean.							
Product	L2 Suite	Description and Use	Units	Availability	Status	Additional Info	
Spectral remote sensing reflectances	OC_AOP	Spectral color of the ocean in the ultraviolet-to-near infrared spectral range. Used as input into algorithms to retrieve information about colored disolved organic matter, phytoplankton, non-algal particles, and other aquatic constituents. Provided in continuous 2.5-mm steps from 350 to 717.5-nm with a resolution (bandwidth) of 5-nm.	sr ⁻¹	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Provisional	ATBD SAT members: Boss, Zhai, Krotkov, Chowdhary, Stamnes, Zhang In situ measurement protocols	
Surface reflectance	SFREFL	Effective reflectance of the Earth's surface as observed by OCI. Used as an input to downstream ocean data products. Includes inland waters as well as ocean surface reflectance.	unitless	Level-2 1-km (at nadir), daily - Level-3 spatial resolution TBD; daily, 8-day, monthly	Test	Current product: L2gen; investigating MAIAC (Lyapustin) and ISOFIT	
Apparent visible wavelength	OC_AOP	An optical water classification index reported as the weighted harmonic mean of visible-range Rrs wavelengths (400-700 nm)	nm	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Test	ATBD	
Spectral diffuse attenuation coefficients	OC_IOP	Spectral diffuse attenuation of downwelling irradiance at multiple wavelengths between 350 and 700 nm. Provides indices of water clarity and light penetration.	m-1	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Test	ATBD SAT members: Boss, Stramski, Odermatt In situ measurement protocols	
Spectral phytoplankton absorption coefficients	OC_IOP	Spectral absorption coefficients for total phytoplankton absorption at multiple wavelengths between 350 and 700- nm. Provides information on phytoplankton physiology, abundance, and community composition.	m ⁻¹	Level-2 1-km at nadir; daily - Level- 3.4-km; daily, 8-day, monthly, annual	Provisional	ATBD SAT members: Twardowski, Stramski, Shuchman, Pahlevan, Siegel, Barnes, Stamnes, Chowdhary In situ measurement protocols	
Spectral non-algal particle plus dissolved organic matter absorption coefficients	OC_IOP	Spectral absorption coefficients for non-algal particulates and dissolved organic matter at multiple wavelengths between 350 and 700-nm. Provides information on the concentrations of the dissolved component of organic carbon and the detrital (non-algal) component of the particulate assembly.	m ⁻¹	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Provisional	ATBD SAT members: Twardowski, Stramski, Barnes, Stamnes, Chowdhary In situ measurement protocols	
ipectral particle backscattering coefficients	OC_IOP	Spectral backscattering of the light associated with particulate material, at multiple wavelengths between 350- 700 nm. Provides an indicator of the concentration of particules in the ocean and a proxy indicator of particulate carbon concentrations.	m-1	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Provisional	ATBD SAT members: Twardowski, Stramski, Shuchman Pahlevan, Barnes, Stamnes, Chowdhary, Zhang, Odermatt	
luorescence line height		Light leaving the surface ocean due to the sun induced chlorophyll fluorescence. Provides an indicator of phytoplankton physiology (health?).	W m $^{-2}$ um $^{-1}$ sr $^{-1}$	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Test	ATBD SAT member: Westberry	
aily photosynthetically available radiation (PAR)	OC_PAR	The amount of sunlight that is useful for photosynthesis, defined here as the 400-700 nm spectral range, that reaches the surface of the ocean over a day. As phytophankton require light to convert longanic carbon to organic carbon, PAR provides a critical parameter for understanding the oceanic carbon cycle.	Einsteins m ⁻¹ d ⁻¹	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Provisional	ATBD SAT member: Boss	
Concentration of chlorophyll-a	OC_BGC	Near surface concentration of the photosynthetic pigment chlorophyll-a. Provides proxies for algal biomass, ecosystem health and function, and eutrophication.	mg m ⁻³	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Provisional	ATBD SAT members: Gaube, Shuchman, Siegel, Pahlevan, Zhai, Chowdhary, Odermatt In situ measurement protocols	
Concentration of particulate organic carbon	OC_BGC	Near surface concentration of the particulate organic carbon. It is a proxy for all living material (phytoplankton, zooplankton, bacteria) and detritus. It is also a venue through which organic carbon, sequestered through the photosynthesis, is transfered towards higher trophic levels and into the deep ocean.	mg m ⁻³	Level-2 1-km at nadir; daily - <u>Level-</u> 2 4-km; daily, 8-day, monthly, annual	Test	ATBD In situ measurement protocols	
Concentration of particulate inorganic carbon		Concentration of particulate inorganic carbon in the surface of the ocean. Used to track the presence and abundance of calcite containing phytoplankton in the open ocean (coccolithophores).	mol m ⁻³	L <u>evel-2</u> 1-km at nadir; daily - <u>Level-</u> <u>3</u> 4-km; daily, 8-day, monthly, annual	Test	ATBD	
Concentration of phytoplankton carbon	OC_BGC	Concentration of carbon contained in phytoplankton cells. Provides a proxy for phytoplankton biomass that is often used in primary productivity algorithms and biogeochemical and Earth System models.	mg m ⁻³	Level-2 1-km at nadir; daily - Level- 3 4-km; daily, 8-day, monthly, annual	Test	SAT member: Westberry ATBD	

PACE Ocean Color Data Access using Python/Jupyter Notebooks

- PACE data are located on an Amazon Web Service (AWS) Cloud Data Storage (S3) Buckets.
- Overview of Python libraries for data search, download, and visualization, and stream data from Earthdata Cloud using:
 - earthdata_cloud_access.jp
 - ARSET_PACE_visualization.jp
- Software and sample data files used in the training are available from the training webpage.

Homework and Certificates

- Homework:
 - One homework assignment
 - Opens on 9/10/2024
 - Access from the training webpage
 - Answers must be submitted via Google Forms
 - Due by 24/10/2024
- Certificate of Completion:
 - Attend all three live webinars (attendance is recorded automatically)
 - Complete the homework assignment by the deadline
 - You will receive a certificate via email approximately two months after completion of the course.

Contact Information

278

Trainers:

- Antonio Mannino
 - <u>Antonio.mannino-1@nasa.gov</u>
- Morgaine McKibben
 - <u>morgaine.mckibben@nasa.gov</u>
- Anna Windle
 - <u>anna.windledipaola@nasa.gov</u>
- Carina Poulin
 - <u>carina.poulin@nasa.gov</u>
- Amita Mehta
 - <u>Amita.v.mehta@nasa.gov</u>

- ARSET Website
- Follow us on Twitter!
 - <u>@NASAARSET</u>
- <u>ARSET YouTube</u>

Visit our Sister Programs:

- <u>DEVELOP</u>
- <u>SERVIR</u>

Acronyms

- CZCS: Coastal Zone Color Scanner Experiment
- EMIT: Earth Surface Mineral Dust Source Investigation
- EnMAP: Environmental Mapping and Analysis Program
- EO-1: Earth Observing One Satellite
- HARP2: Hyper-Angular Rainbow Polarimeter-2
- HICO: Hyperspectral Imager for the Coastal Ocean
- MODIS: Moderate Resolution Imaging Spectroradiometer
- OCI: Ocean Color Instrument
- PACE: Plankton, Aerosol, Cloud, and ocean Ecosystem
- PRISMA: PRecursore IperSpettrale della Missione Applicativa
- SeaDAS: Sea, Earth, and Atmosphere Data Analysis System
- SeaWiFS: Sea-Viewing Wide Field-of-View Sensor
- SPEXone: Spectro-Polarimeter for Planetary Exploration
- VIIRS: Visible Infrared Imaging Radiometer Suite

Resources

- OBPG Tutorials and Data Recipes
 - OCI File Structure Notebook
 - OCSSW Tools Notebook
 - HARP2 Data Visualizations Notebook
- PACE Hackweek Website
- <u>SeaDAS</u>

Thank You!

NASA ARSET – Introduction to PACE Hyperspectral Observations for Water Quality Monitoring