

The Application of Earth Observations for Assessing Waterborne Disease Risk Part 2: Using Remote Sensing-Based Vibrios Predictive Intelligence for Intervention and Mitigation

Dr. Antar Jutla (University of Florida), Bailey Magers (University of Florida)

March 27, 2025

Training Outline

Part 2 Part 1 Overview of **Using Remote** Monitoring Water-Sensing-based borne Diseases **Vibrio Predictive** using Remote Intelligence for Sensing Intervention and Observations Mitigation March 27, 2025 March 25, 2025

Homework Opens Month 3/27/2025 – Due 4/10/2025 – Posted on Training Webpage

A certificate of completion will be awarded to those who attend all live sessions and complete the homework assignment(s) before the given due date.

NASA ARSET - The Application of Earth Observations to Assessing Waterborne Disease Risk

Part 2 – Trainers

27

Dr. Antarpreet Jutla

Associate Professor, Department of Environmental Engineering Sciences Co-Director, USGS Florida Water Resources Center, University of Florida

Bailey Magers

PhD Candidate, Engineering School of Sustainable Infrastructure and Environment, University of Florida

The Application of Earth Observations for Assessing Waterborne Disease Risk Part 2: Using Remote Sensing-Based Vibrios Predictive Intelligence for Intervention and Mitigation

Part 2 Objectives

275

- 1. Recognize how satellite observations are used for prediction of waterborne diseases.
- 2. Recognize how satellite observations with in situ water quality data are integrated to develop waterborne diseases using cholera as an example.

- Waterborne Diseases: The Impending Threat of Vibrios
- Vibrio cholerae: Lessons Learned From a Model Pathogen
- Art of Prediction
- The Cholera Risk Model incorporating NASA Remote Sensing Data
- Interpreting and Understanding Cholera Risk
- Lessons Learned and Future Applications in Florida

Waterborne Diseases: The Impending Threat of Vibrios

Impacts of Environmental Variability on Waterborne Pathogens

NASA ARSET - The Application of Earth Observations to Assessing Waterborne Disease Risk

8

Spike in vibrio cases after Hurricane Ian

TIME

Florida issues warning over flesh-eating bacteria in wake of Hurricane Ian

The New York Times Hurricane Ian Is Blamed for Deadly Bacterial Infections in Florida

Sep 2022

CNN

Dangerous flesh-eating bacterial infections increased in Florida after Hurricane Ian

Flesh-Eating Bacteria Cases Are Rising in Florida After Hurricane Ian

Hurricane Milton Impacts

And when we thought we had enough... Hurricane Milton happened.

NATION

Vibrio vulnificus

Flesh-eating bacteria cases rise to record level after hurricanes in Florida

The bacteria can infect a person with an open wound, such as a cut, and can cause the skin and soft tissue around the wound to quickly break down.

Liz Freeman, C. A. Bridges and Thao Nguyen USA TODAY NETWORK

Published 2:32 a.m. ET Oct. 22, 2024 | Updated 9:53 p.m. ET Oct. 22, 2024

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

Increased Presence of WBD and Vibriosis

Number of Vibriosis Cases by Causative Vibrio spp. (1990–2019)

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

What Pathogenic Vibrio spp. are in the USA?

Dominant Species of Vibriosis Cases From 2010-2019

12

Temporal Trends in Florida: 2001-2022

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

Environmental Factors Influencing Vibrio spp.

- Sea Surface Temperature
- Precipitation
- Flooding ۲
- Coastal Salinity
- Dissolved Organic Matter
- Chlorophyll Proxy for Phytoplankton and Zooplankton

These environmental data are available from NASA Earth observations.

Prediction of Vibrio spp. For Florida

Genomic sequencing and microbiological sampling has provided insights to the presence and abundance of other pathogenic Vibrio spp., particularly in the United States.

Advances in remote sensing of sea surface temperatures, salinity, chlorophyll, and phytoplankton make monitoring coastlines and brackish waters more feasible, helping to predict risk of vibriosis.

Vibrios are autochthonous to brackish water!

Vibrio cholerae: Lessons Learned From a Model Pathogen

Cholera

50 Countries

Impacted by Cholera in 2023

700,000 Cases

Of Cholera in 2023

4,300 Deaths

Of Cholera in 2023

Hours

The Length of Time Cholera can be Fatal if Untreated

Vibrio cholerae

Cholera is a diarrheal disease caused by consumption of contaminated drinking water containing Vibrio cholerae, a bacterium. V. cholerae is found in riverine, estuarine, and coastal environments and also freshwater ecosystems globally.

V. cholerae is an ecologically significant bacterium, and it will never be eradicated. Cholera is caused by consuming a large enough dose of V. cholerae to cause an infection.

Timeline of Vibrio cholerae Studies

	Microbiological Theory		Field Data Campaigns	Prevention and Earth Observations	Integration of Microbiological, Field data, Earth Observations	
 Ter Pre Sal spr Do est 	mperature, ecipitation, linity (Vibrio p.) ose response tablished	 Viable But Non Culturable (VBNC) Bacteria 	 Temperature, Precipitation, Salinity and Aquatic ecology Characterization of Serotypes (0139) 	 Exploration of data from satellites for linking with cholera outbreaks Sari Filtration 	 Epidemic/ Endemic Cholera Four-week Predictive Prototyping 	 Real time cholera prediction
1	960s	1970s 1980s	1990s	2000s	2010s	2020s

The Art of Prediction

Prediction and Predictability

Schematic representation of the disease control measures implemented at the beginning (Scenario A) and after the peak (Scenario B) of an outbreak, and potential cases averted.

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

Using Remote Sensing for Cholera

Lobitz, Brad, et al. "Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement." Proceedings of the National Academy of Sciences, vol. 97, no. 4, 15 Feb. 2000, pp. 1438-1443, <u>https://doi.org/10.1073/pnas.97.4.1438</u>

Cholera in the Indus River Basin

Odds of cholera outbreaks during above average and below average temperature and corresponding odds ratio.

Odds of cholera outbreaks during above average and below average rainfall and corresponding odds ratio.

Jutla, A.S., Whitcombe, E, Hasan, H., Haley, B., Akanda, A., Hug, A., Alam, M., Sack, B., Colwell, R. 2013. Environmental factors influencing epidemic cholera. American Journal of Tropical Medicine and Hygiene, 89(3):597-607.

Environment Sensitive Cholera Hypothesis

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

Remote Sensing Data Used in Vibrio cholerae Model

Variable	Data Product	Spatial Resolution	Temporal Resolution	Availability
Historic Precipitation Data	TRMM	0.25 deg X 0.25 deg	Daily	https://disc.gsfc.nasa.gov/datasets /TRMM_3B42_Daily_7/summary
Recent Precipitation Data	GPM IMERG	0.1 deg X 0.1 deg	Daily	<u>https://disc.gsfc.nasa.gov/datasets/</u> <u>GPM_3IMERGDL_07/summary</u>
Historic and Recent Temperature Data	MERRA-2	0.5 deg X 0.625 deg	Daily	<u>https://disc.gsfc.nasa.gov/datasets/</u> <u>M2SDNXSLV_5.12.4/summary</u>
SPEI Data	ERA5	30 km X 30 km	Monthly	https://www.drought.gov/data-download
Population Data	ORNL LandScan	~1 km X ~1 km	N/A	<u>https://landscan.ornl.gov/</u>

The Cholera Risk Model

Impact of Resilient WASH

Pathogen analysis results by UIUC confirm that proactive response by the local communities shortly after the earthquake allow the microbial community to return to the pre-earthquake condition.

Uprety et al, 2017 Earthquake Spectra; Uprety et al, 2017 Frontiers in Microbiology; Khan et al, ASCE JWRPM, 2018

Nepal

 Khan, Rakibul, et al. "Evaluation of risk of cholera after a natural disaster: Lessons learned from the 2015 Nepal earthquake." Journal of Water Resources Planning and Management, vol. 144, no. 8, 31 Aug. 2018, <u>https://doi.org/10.1061/(asce)wr</u>. <u>.1943-5452.0000929</u>.

Haiti

 Khan, Rakib, Anwar Huq, et al. "Assessment of risk of cholera in Haiti following Hurricane Matthew." The American Journal of Tropical Medicine and Hygiene, vol. 97, no. 3, 7 Sept. 2017, pp. 896–903, https://doi.org/10.4269/ajt mh.17-0048.

More Rain ≠ More Cholera

- Week 1: May 25-June 21 **Low**
- Week 2: June 1- June 28 Low
- Week 3: June 8- July 5 Low
- Week 4: June 15- July 12 Low
- Week 5: June 22- July 19 Low

@Copyright 2020 University of Florida Research Foundation, Inc. All Rights Reserved

Yemen

 Usmani, Moiz, et al. "Combating Cholera by Building Predictive Capabilities for Pathogenic Vibrio Cholerae in Yemen." Scientific Reports, vol. 13, no. 1, 8 Feb. 2023, <u>https://doi.org/10.1038/s41598-022-22946-y</u>.

Model Validation

Drought Impacting Vibrio

We observed a few regional anomalies with our hypothesis.

In 2022, an outbreak occurred in Ethiopia that did not fall under the conditions of our previous hypothesis or model.

Upon investigation, the region was experiencing a drought at the time of outbreak.

Modified Hypothesis for Extreme Events

Odds of Cholera Increase During a Drought

A LIDROLOGY HORATORY

- Cholera Outbreaks are **3 times** more likely during a drought.
- When combined with our previous hypothesis, we found that the odds of a cholera outbreak are **3.5 times** more likely during extreme climate events.

Updated Cholera Model

Two Scenarios: Drought or Excess Rainfall

Interpreting and Understanding Cholera Risk

Threat Level = Risk Score + Rising/Decreasing Value

Figure 3: Changes in the risk scores from previous week (in percentage)

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

What is Risk?

Values are on a Scale of 0 to 1	0.3 > Risk = Low 0.5 > Risk > 0.3 = Medium Risk > 0.5 = High
High Risk	High chance of populations with insufficient or damaged WASH infrastructure interacting with water contaminated with V. <i>cholerae</i> Region will have cases of cholera greater than the spatial average of all cases
Medium Risk	Chance of populations with insufficient or damaged WASH infrastructure interacting with water contaminated with V. <i>cholerae</i> , but not likely Will need to monitor the region for the next 4 weeks It implies that the region is one standard deviation below the spatial average of cholera cases
Low Risk	No or very low risk of cases of cholera

Interpretation Disclaimers

Risk cannot be converted to number of cholera cases.

Model results are generally valid for the next 4 weeks, but week-to-week variation should be taken with caution.

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

Cholera Situation Awareness Reports

- Generated for a Particular Region On request currently
 - New Regions: 10 days turnaround time
 - Existing Regions: 3-5 days turnaround time
- Report produced every Monday/Tuesday
- Users can send comments, feedback, or requests using email: <u>choleraprediction users@lists.ufl.edu</u>

SITUATION AWARENESS REPORT

What actions should be taken for each level of risk?

What to Do	Details	Interpretation
Activity 1: High Risk	Improve access to WASH Water samples should be collected and tested for cholera bacteria (if possible) Medical intervention	 Immediate need to provide WASH and education for high-risk communities. At this point, if possible, collect water samples to identify hot spots of the presence of cholera bacteria. Medical intervention, with access to doctors and hospitals prioritized.
Activity 2: Medium Risk	Stable WASH Recommend collection of water samples for cholera bacteria Prepare for medical intervention	Provide WASH and education, given the risk exists, but not at an alarming level. At population centers, microbiological analysis of water samples should begin. Medicines should be stockpiled for a possible outbreak.
Activity 3: Low Risk	Sustain WASH	Low cholera risk and an opportunity to develop policies for sustaining WASH and education for the community.

Lessons Learned and Future Applications in Eastern USA

Dashboard by the GeoHealth & Hydrology Lab at University of Florida

Current Vibrio Models

B ECDC Vibrio Map Viewer: Daily suitability index

ach.

30

24

18

12 6

0

Practical Salinity Units (PSU)

Linap d

Washington

C NASA GIOVANNI: Time averaged sea surface temperature

NOAA CBOFS: Salinity averaged over top 1 m (1e-3)

Future Models and Prediction – Using PACE and Future Data Products

Part 2 Summary

Summary

Vibrio Prediction

New technologies and decades of research have allowed for realtime monitoring of environmental parameters associated with Vibrio spp.

Lessons from our cholera model and mitigation projects have helped us prepare for prediction of *Vibrio spp.* in the US. Vibiriosis and enteric pathogens are a threat to human health, and earth observation satellites provide an opportunity for interventions

07.06.23

2030

The Application of Earth Observations for Assessing Waterborne Disease Risk **Summary**

Reviewed Common Waterborne Diseases

- **Diarrhea:** Caused by viral or bacterial infections from water & food. Can also result from food allergies.
 - Dehydration resulting from diarrhea can be life threatening, particularly to young children.
- **Typhoid:** Caused by Salmonella bacteria in water and food. Highly contagious.
 - Regular outbreaks in Southeast Asia and Africa.
- Cholera: Caused by Vibrio cholerae bacteria from contaminated water and poor sanitation.
 - Deadly if not treated immediately. Most prevalent in Southeast Asia, Africa, Haiti.
- **Escherichia coli (E. coli):** Caused by bacterial infection.
- **Giardia:** Caused by parasites infecting intestine. Found in waters worldwide.
- Hepatitis A: Caused by Hepatitis A virus. It is a highly contagious liver infection.
- Polio: Caused by a virus that mainly affects the nerves in the spinal cord or brain stem.
 - High-risk areas are Africa, the Middle East, and Southern and Central Asia.

https://www.mayoclinic.org/diseases-conditions/

Identified Environmental Parameters Relevant for Inferring the Presence of Waterborne Pathogens

- These factors affect survival, growth, and spread of pathogens (water-related illnesses):
 - Water Temperature
 - Precipitation/Flooding
 - Nutrients and Chemicals from Agricultural and Industrial Runoff (Landcover, Soil Moisture)
 - Chlorophyll/Harmful Algal Blooms
 - Dissolved Organic Matter
 - Salinity
 - Solar Radiation

Introduced Satellite Missions and Earth System Models Relevant for Disease Risk Prediction Models

Sentinel-1


```
PACE
```


Senitnel-3 OLCI

Global and Regional Land Data Assimilation System (LDAS)

MERRA-2: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

Reviewed Webtools to Search, Access, and Visualize Earth Observation Data

аų,

Earthdata Search

<u>Worldview</u>

<u>CYaN</u>

Recognized the Use of Earth Observations in Vibrio cholerae Prediction Model

Data Daurtra MERITA 2 NOAA NEEP	Warm ELL	Heavy	Data Source Office Marcoffice
Met-Office		1	
OUTPUT Dathes Risk	High Cholers	Water	*
Ndru)Mr	4	A.	UNCEF BEAC Worldhig Landban
Low	Cholera Risk	Water Securi	w /

Precipitation Data	TRMM & GPM IMERG
Historic and Recent Temperature Data	MERRA-2
*SPEI Data	ERA5

*Standardized Precipitation Evapotranspiration Index

Cholera predictions in Nepal, Haiti, and Yemen

Vibrio Information

GeoHealth & Hydrology Lab at the University of Florida

Vibrio Prediction Hub

Summary

HOROLOGY HOR

- Advantages and Limitations of Earth Observations:
 - A wide variety of open source and cost-free environmental data availability
 - Global, consistent spatial and temporal coverage; 10+ to 20+ years of data available
 - Webtools available for data search, access, and visualization
 - Different data sources with varying spatial and temporal resolutions
 - Data gaps due to swath widths
 - Missing data retrievals from optical images in the presence of clouds
- In situ water sample data and disease incidence data are necessary for the development of disease prediction models and their validation.
- Both prolonged wet (floods) and dry (droughts) conditions impact interactions of humans with pathogens:
 - Unsafe WASH conditions due to water insecurity (droughts)
 - Consumption of contaminated water (floods)
- Increasing risk of vibriosis along the Southern and Eastern coasts of the US

Homework and Certificates

THURDLOOD THURD

- Homework:
 - One homework assignment
 - Opens on 03/27/2025
 - Access from the training webpage
 - Answers must be submitted via Google Forms
 - Due by 04/10/2025
- Certificate of Completion:
 - Attend all three live webinars (attendance is recorded automatically)
 - Complete the homework assignment by the deadline
 - You will receive a certificate via email approximately two months after completion of the course.

Contact Information

275

Trainers:

- Amita Mehta
 - <u>Amita.v.mehta@nasa.gov</u>
- Dr. Antarpreet Jutla
 - <u>ajutla@ufl.edu</u>
- Bailey Magers
 - <u>bmagers@ufl.edu</u>

Coordinator:

• Natasha R. Johnson-Griffin

Editors:

- Suzanne Monthie
- Jonathan O'Brien

Coordinators:

- Brock Blevins
- Sarah Cutshall
- Selwyn Husdson-Odoi
- ARSET Website
- Follow us on Twitter!
 - <u>@NASAARSET</u>
- <u>ARSET YouTube</u>

Visit our Sister Programs:

- <u>DEVELOP</u>
- <u>SERVIR</u>

Resources

- GPM Health Appplications
- PACE Applications
- Waterborne Diseases: CDC

Thank You!

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

Activity 1

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

This time, Internally Displaced People (IDP) data due to flooding is given.

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

65

Transportation Data

- Incorporating this data would help us predict areas of greater population movement.
- Could help inform at-risk individuals of routes to lower risk areas.

Macharia, Peter & Mumo, Eda & Okiro, Emelda. (2021). Modelling geographical accessibility to urban centres in Kenya in 2019. PLoS ONE. 16. e0251624. 10.1371/journal.pone.0251624.

Hospital and Medical Facility Data

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

NASA ARSET – The Application of Earth Observations to Assessing Waterborne Disease Risk

Thank You

Contact Us: Bailey Magers – bmagers@ufl.edu Dr. Antarpreet Jutla – ajutla@ufl.edu

