

Introduction to NASA Snow and Ice Data Products and Applications

Part 2: Access, Analysis, and Visualization of NASA Snow and Ice Data Products

ARSET Hosts: Amita Mehta (612, GESTAR II) & Sean McCartney (610, SSAI) Mikala Beig, Saber Brasher, Diane Fritz, Andy Barrett (National Snow and Ice data Center – NSIDC)

July 31, 2025

Part 1 Review

- Snow and ice play a crucial role in Earth's water cycles:
 - Snowmelt serves an important source of water in many regions.
 - Interannual variations in snowpack has substantial impact on regional water availability, and can lead to floods or droughts.
- When snow accumulates at high latitudes or high elevations, water is stored from days and months, hundreds to tens of thousands of years (glaciers).
- Measurements of snow:
 - Snow Covered Area (SCA), Snow thickness, Snow Water Equivalent (SWE)
- Snow properties:
 - Snow albedo, Snow grain size, Snow impurities

Part 1 Review

Remote Sensing of Snow:

- Passive microwave, visible and near-infrared spectral measurements are used

Satellite and Sensors:

- DMSP: SSMI, SSMIS, NASA/JAXA AMSR-E, AMSR-2
- NASA EOS:MODIS
- NOAA-8 to -19: AVHRR, SNPP & NOAA-20 & 21 VIIRS

Remote Sensing Products:

- Snow Cover, Snow Albedo, and Snow Water Equivalent

Training Outline

Part 1

Overview of NASA Snow and Ice Data Products

July 24, 2025

Part 2

Access, Analysis, and Visualization of NASA Snow and Ice Data Products

July 31, 2025

Part 3

Monitoring Mountain Snowpack and Prediction of Water Availability in the Western US for Water Resources and Disaster Applications

August 7, 2025

Homework

Opens August 7 – Due August 21 – Posted on Training Webpage

A certificate of completion will be awarded to those who attend all live sessions and complete the homework assignment(s) before the given due date.

Part 2: Access, Analysis, and Visualization of NASA Snow and Ice Data Products

Part 2 Objectives

By the end of Part 2, participants will be able to:

- Search and access NASA snow and ice data products.
- Recognize ways to analyze and visualize snow and ice data products.
- Compare coincident snow data across in-situ, airborne, and satellite platforms from NASA's SnowEx, Airborne Snow Observatory (ASO), and MODerate resolution Imaging Spectroradiometer (MODIS) data sets.

How to Ask Questions

- Please put your questions in the Questions box and we will address them at the end of the webinar.
- Feel free to enter your questions as we go. We will try to get to all of the questions during the Q&A session after the webinar.
- The remainder of the questions will be answered in the Q&A document, which will be posted to the training website about a week after the training.

Guest Speakers

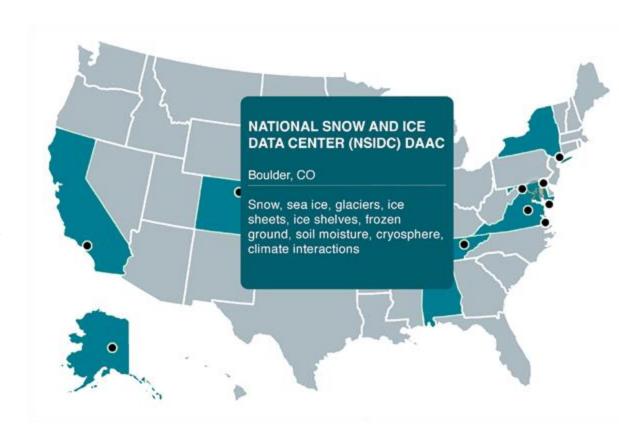
Mikala Beig Associate Scientist

Saber Brasher Associate Scientist

Diane Fritz

Andrew Barrett Associate Scientist Senior Associate Scientist

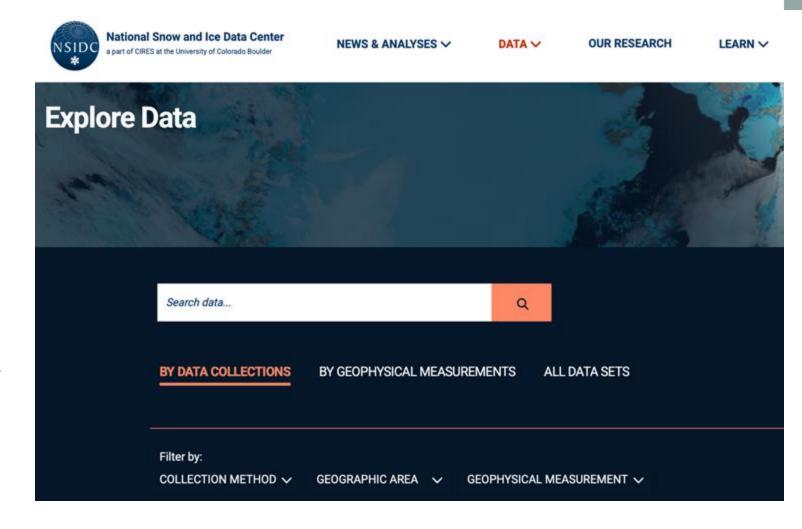
NASA National Snow and Ice Data Cener (NSIDC)

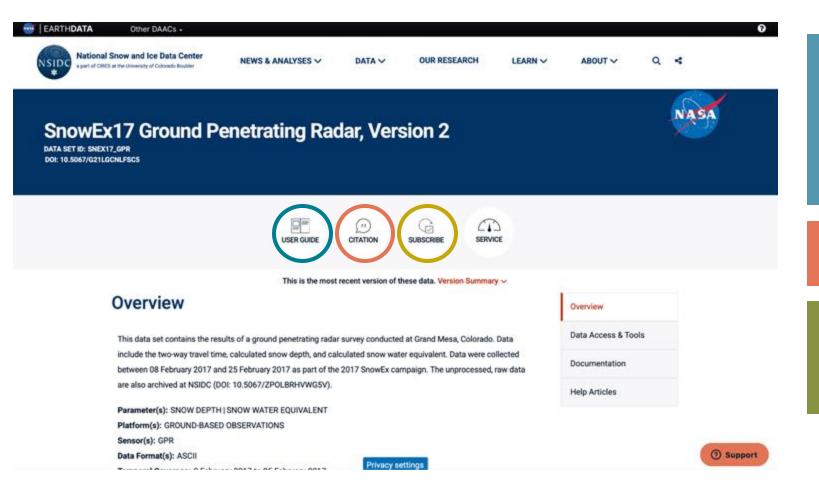


Search and Access NASA Snow and Ice Data

Mikala Beig & Saber Brasher National Snow and Ice Data Center

NASA National Snow and Ice Data Center (NSIDC)


- NSIDC data management programs focus on preserving, documenting, and providing access to over 1400 data sets related to the snow and icecovered regions of the world.
- They include data from Earth-observing satellite missions, airborne surveys, field observations, weather stations, historical records, and data rescue projects.
- NSIDC is one of 11 NASA Distributed Active Archive Centers (DAACs).
- NSIDC data is available for free to anyone!
 - Helpful to have some prior experience working with commonly used scientific data formats (e.g., GeoTIFF, NetCDF, or HDF)
 - Most data sets have user guides to help


Searching for NSIDC Data

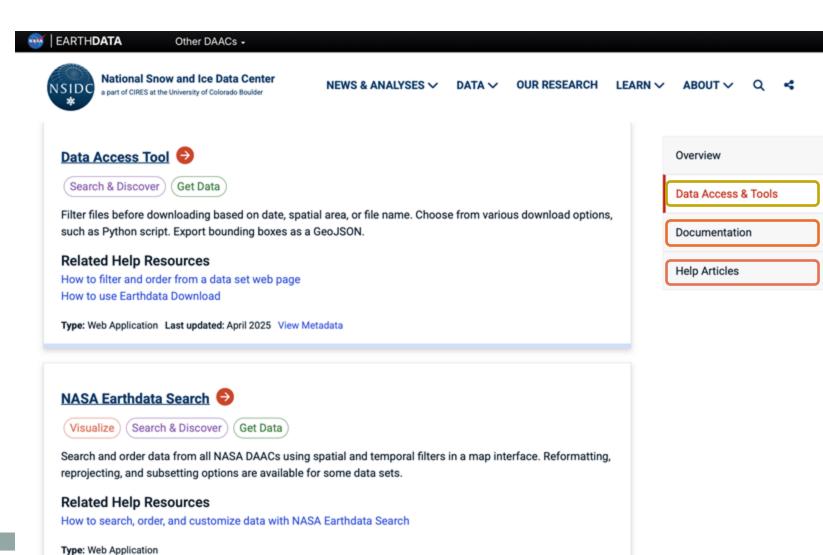
- Explore Data Page: Search bar can search for keywords within NSIDC data sets
 - Browse data collections, which group data together by various NASA missions and other projects
 - Collections can be filtered by collection method, geographic area, and geophysical measurement (for example, sea ice, ice sheets, glaciers, snow, soil moisture, or frozen ground)
- Get started with NSIDC Data FAQ

Data Set Specific Landing Pages: SnowEx17

User Guide:

Comprehensive product documentation on file structure, variable info, data acquisition, etc.

Citation


Subscribe:

Sign up to receive email updates of the data set

SnowEx17 Ground Penetrating Radar, Version 2

Data Set Specific Landing Pages: NSIDC

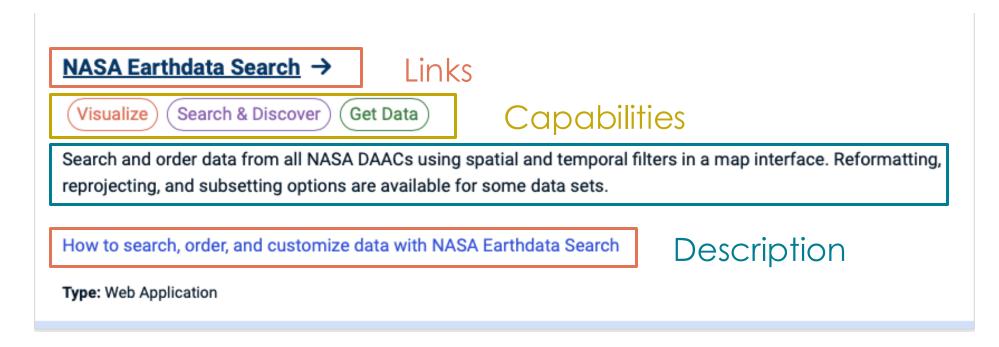
Access:

Tools and services for accessing the data

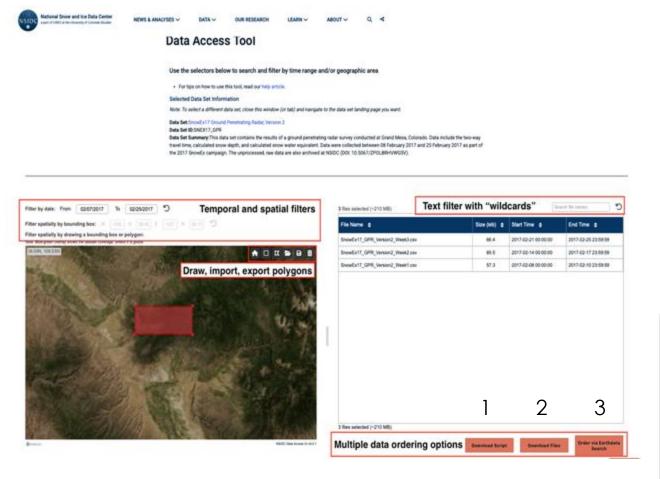
Documentation:

Known issues, ATBDs, Data dictionaries, User guides

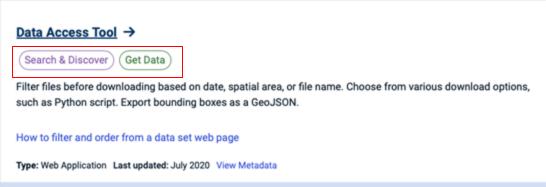
Help articles:


Useful information for the data product

Accessing NSIDC DAAC Data



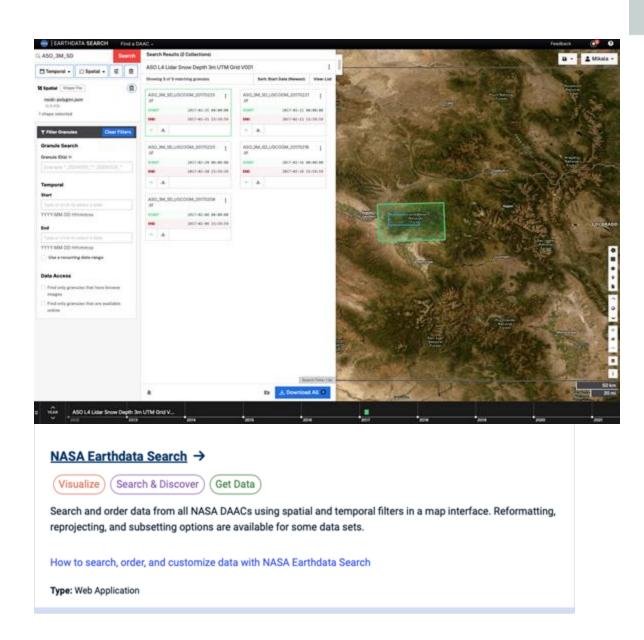
Each "card" contains a link(s) (access!); the capabilities of the data access method (what it can do!); and a description of the services provided, such as below:



NSIDC Data Access Tool

NSIDC Data Access Tool:

- Intuitive and simple way to quickly filter and access data from the NSIDC website
- Provides multiple ways to place your order -1) Python script, 2)
 Earthdata Download tool, 3) preconfigured Earthdata Search order



NASA Earthdata Search

NASA Earthdata Search:

- Discover, visualize, and access petabytes of Earth observing data from all NASA DAACs
- Filter data by mission, keyword, spatial and temporal range, filename, etc.
- Provides customization services (e.g., subsetting) for select data sets

Application for Extracting and Exploring Analysis Ready Samples (AppEEARS)

AppEARS:

- Access data from a variety of federal data archives
- Subset data spatially, temporally, and by variable
- Transform data from its original format into an analysis ready format (e.g., GeoTIFF)

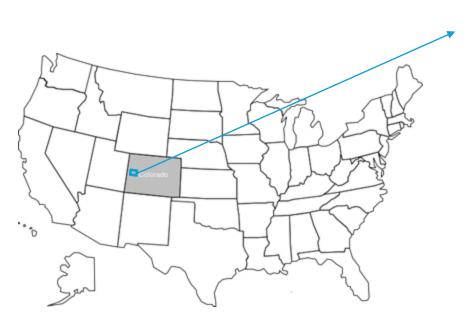
Data Discovery and Access

NASA Earthdata Search Demo:

Search for data from the NASA/JPL Airborne Snow Observatory (ASO) aircraft survey campaigns using a spatial filter.

For help email: nsidc@nsidc.org

To register for an Earthdata Login profile visit: https://urs.earthdata.nasa.gov/



Download, Analyze, and Visualize Snow Data Diane Fritz & Andy Barrett National Snow and Ice Data Center

Goal – Go Through an Example Exploring Snow Data

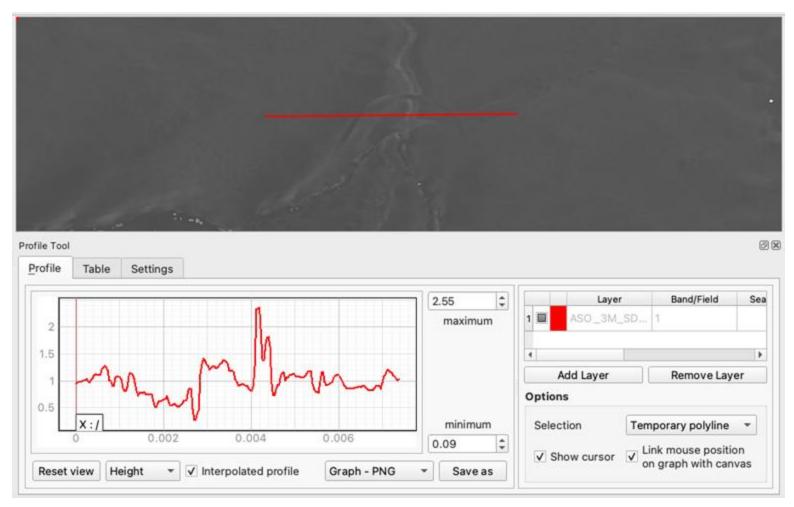
- We've learned about NSIDC data and how to find it, so let's USE it!
- Example: Grand Mesa in Colorado
- Concepts can be applied to other basins across the globe

Grand Mesa study area showing SnowEx GPR data boundaries in NASA's Earthdata Search

Platform: Visualizing and Analyzing Data with QGIS

m

- QGIS is a free and opensource platform for working with spatial data
- QGIS.org
- Volunteer supported
- Highly customizable



Working with QGIS

Spatial data interface customizable with Plugins!

We'll be using the Profile tool plugin to examine raster data values like snow depth.

ASO Ground Penetrating Radar (GPR) data displaying snow depth from NSIDC

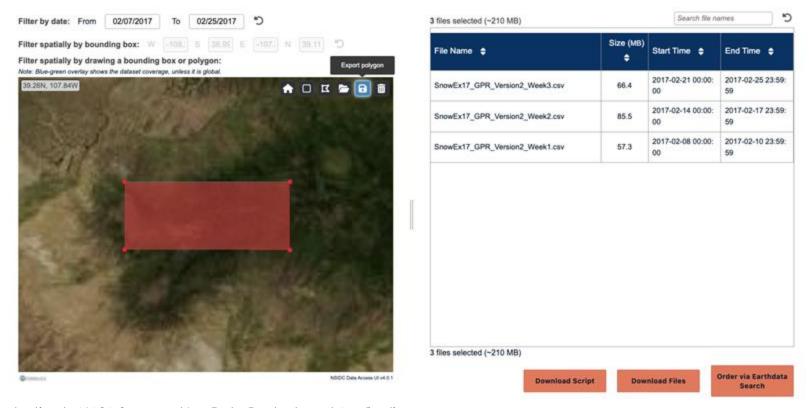
Snow Data We'll Use from NSIDC

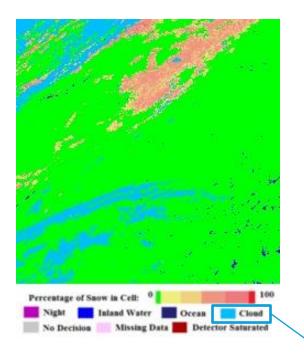
These are just a few of many datasets we host!

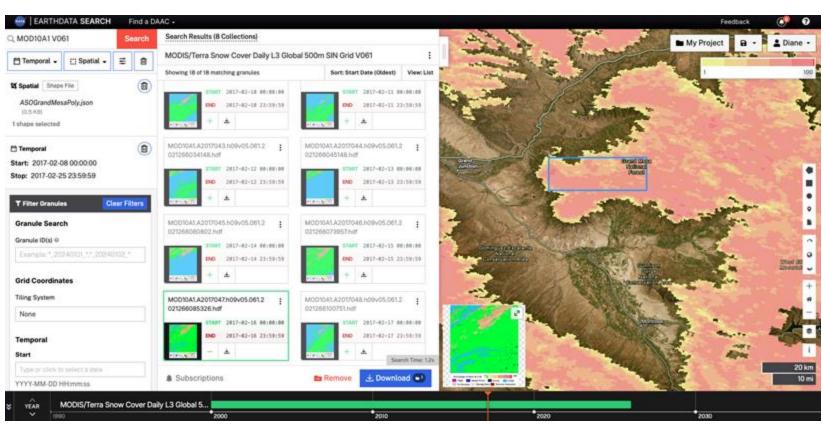
- SnowEx GPR
 - Short name: SNEX17_GPR
 - Parameters:
 - Snow "Thickness"
 - Snow Water Equivalent (SWE)
 - Two-way travel time
 - Location information

- ASO Gridded LiDAR
 - Short name: ASO_3M_SD
 - Snow Depth in meters
 - 3-meter resolution

- MODIS NDSI
 - Short name: MOD10A1
 - Parameters:
 - NDSI scaled to 1–100
 - Data flags (clouds)


NDSI=(Rvis - Rswir)/(Rvis +Rswir)


Determining a Study Area and Time


- We'll start with our highest resolution data: SnowEx GPR
- Data access tool showing the extent of the SnowEx GPR data for Grand Mesa
- Create polygon for searching other data sets
- Note time of data campaign for temporal constraints

Using Browse Images to Assess Data

 Be sure to select files with useful data

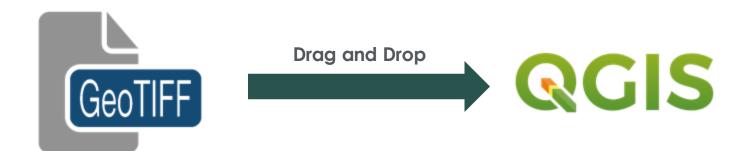
Example browse of MOD10A1 data in NASA's Earthdata Search

This light blue color represents clouds

3 Options: Turning MODIS Data into a GeoTIFF

HDF files are complicated in QGIS.

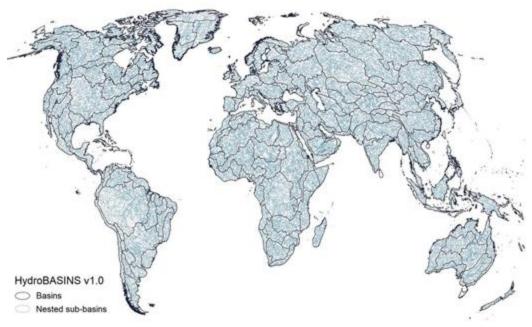
- gdal_translate
- gdal_warp 🗸



AppEEARS (NASA tool)

We'll use this in the demo!

Coming Soon: NASA
 Earthdata Search
 transformations upon
 ordering

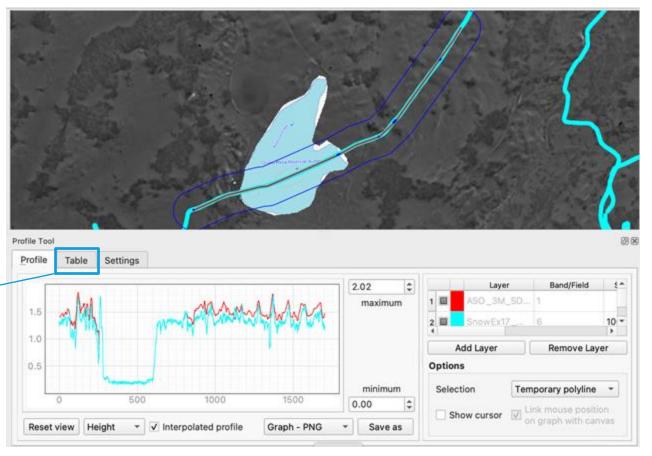


Watershed Boundaries – Limiting Snow Data to Your Region of Interest

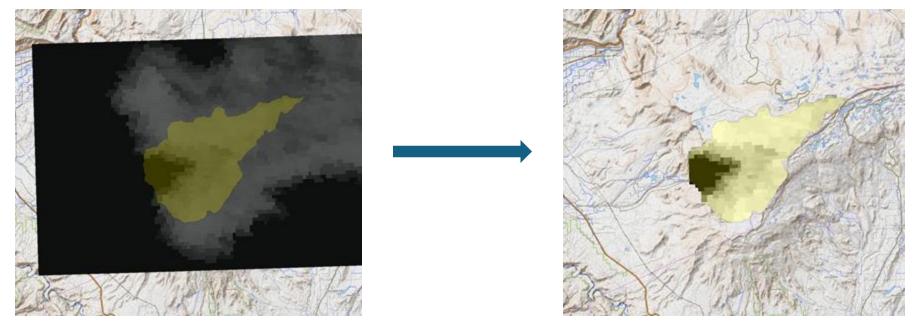
Data external to NSIDC

- Hydrobasins (Global)
 - Nested scaled watersheds by continent

- National Hydrography Dataset (U.S.)
 - Smaller watershed boundaries available


WBD data on Colorado's Continental Divide

Comparing Snow Depth Data Along a Transect


- Compare data sources for verification of watershed basin calculations
- Transect can be straight or follow data collection path
- ASO: snow depth in meters
- SnowEx: thickness

Values can be extracted from the Table option and used as inputs for model calculations

Gathering NDSI Data (or Any Raster Data) for a Selected Basin

- Constrain MODIS NDSI data to a watershed boundary
- This could be done over multiple MODIS cloudless-captures to create a time series
- Method can be applied to any raster data with full coverage for your watershed of interest

Demonstration

Demo: Working with Snow Data in QGIS

We'll go through the following steps for exploring NSIDC's snow data in QGIS:

- Find coincident data using spatial and temporal filtering, starting with SnowEx GPR data
- Use AppEEARS to obtain MODIS data as a GeoTiff
- Load SnowEx GPR .csv into QGIS as a point vector layer
- Load ASO gridded LiDAR and MODIS rasters into QGIS
- Use QGIS Profile tool plugin to compare SnowEx and ASO snow depth data along a transect
- Clip MODIS GeoTiff with a watershed boundary and calculate mean value of NDSI

Part 2: Summary

Summary

- Overview of NSIDC:
 - Free access to over 1,400 data sets
 - Easy search and browse specific data set landing pages, user guides, and FAQ
 - Demonstration of data discovery and access tool: NASA Earthdata Search
 - Data sub-setting and extraction tool: AppEARS
- Download, analyze, and visualize snow data:
 - Demonstration using example in Grand Mesa in Colorado
 - Explore, Spatial/temporal selection of SnowEx, ASO, and MODIS NDSI data
 - Analyze and visualize data using QGIS

Looking Ahead to Part 3

Joint ARSET-Western Waters Action Office (WWAO) session:

- Impact of snow data in the Western US.
- Monitor and visualize snow cover, snow albedo, snow darkening, and snow cover duration in the Western US.
- Forecasting snow-fed river flow with case studies in the Western US.

Homework and Certificates

Homework:

- One homework assignment
- Opens on 08/07/2025
- Access from the <u>training webpage</u>
- Answers must be submitted via Google Forms
- Due by 08/21/2025

Certificate of Completion:

- Attend all three live webinars (attendance is recorded automatically)
- Complete the homework assignment by the deadline
- You will receive a certificate via email approximately two months after completion of the course

Acknowledgements

Instructors:

Mikala Beig Associate Scientist, NSIDC-DAAC

Saber Brasher Associate Scientist, NSIDC-DAAC

Diane Fritz Associate Scientist, NSIDC-0DAAC

Andrew Barrette Senior Associate Scientist, NSIDC

Contact Information

Trainers:

- Mikala Beig
 - mikala.beig@colorado.edu
- Saber Brasher
 - saber.brasher@colorado.edu
- Diane Fritz
 - diane.fritz@colorado.edu
- Andrew Barrett
 - andrew.barrett@colorado.edu
- Amita Mehta
 - amita.v.mehta@nasa.gov
- Sean McCartney
 - sean.mccartney@nasa.gov

- ARSET Website
- ARSET YouTube

Join our quarterly newsletter to stay up-to-date on our latest trainings:

- 1. Send an email with no subject line to <u>arsetjoin@lists.nasa.gov.</u>
- 2. Follow the instructions sent in response.

Visit our Sister Programs:

DEVELOP

Resources

- <u>agis.org</u> Free and open-source tool for mapping and analyzing data
- NSIDC datasets Repository of cryospheric data and more
 - MODIS
 - Airborne Snow Observatory
 - SnowEx
- NASA's Earthdata Search
- AppEEARS
- <u>GDAL documentation</u> Specifics on how to use gdal_translate and gdal_warp
- <u>Hydrosheds</u> Seamless hydrographic data for global and regional applications
- <u>The National Hydrography Dataset</u> (NHD) Includes the watershed boundary dataset (WBD)
- QGIS for Hydrological Applications Recipes for catchment hydrology and water management by Hans van der Kwast and Kurt Menke
- Python tutorial a similar exploration of this data with efficiency for repetitive analysis

Thank You!

