

Aplicaciones de Teledetección para el Monitoreo del Balance Hídrico en la Cuenca Inferior del Mekong

27 de Marzo de 2017 John Bolten (NASA GSFC)

Motivación

Figure 8. Population exposed to sea-level rise, storm surge and subsidence by country (for scenario FAC). Total estimated exposure is 147 million people.

Inundaciones en el Mekong

- Las inundaciones están entre los desastres naturales más comunes y dañinos
- Las áreas costeras y bajas son particularmente susceptibles*
- Es probable que el cambio climático incremente el riesgo de inundaciones

* Referencia: Nicholls, R. J. et al. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes. (Organisation for Economic Co-operation and Development, 2008)

Motivación

- Las inundaciones están entre los desastres naturales más comunes y dañinos
- Las áreas costeras y bajas son particularmente susceptibles*
- Es probable que el cambio climático incremente el riesgo de inundaciones

Es crucial entender los **impactos** de las inundaciones para mejorar la respuesta ante los desastres y la mitigación de efectos a nivel local y regional

* Referencia: Nicholls, R. J. et al. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes. (Organisation for Economic Co-operation and Development, 2008)

El Paisaje Hidrológico

Fuente de la Imagen: Chagnon, 1989

NASA's Applied Remote Sensing Training Program

- ¿Cómo podemos reducir nuestra propagación de incertidumbre acerca de extremos hidroclimáticos?
- Por ejemplo, ¿una sequía meteorológica ocasionará una sequía hidrológica o una sequía agrícola?
 - ¿Cómo? ¿Cuándo? ¿Dónde?
- ¿Cómo se relacionan las fases de precipitación y evapotranspiración con la humedad del suelo, el desagüe superficial, el almacenamiento de aguas subterráneas, la descarga fluvial y la productividad de la vegetación?

Cerrando el Balance Hídrico Terrestre Mediante la Teledetección

2018. "Global Hydrological Cycles and Water Resources." National Academies of Sciences, Engineering, and Medicine. 2018. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, Washington, DC: The National Academies Press [10.17226/24938]

Satélites, Sensores y Cronogramas

Atmósfera	Terra/Aqua superficial,	(AIRS): perfil de vapor 12,5 km (2000 - hoy)	, nubes, perfil de tempe	eratura aérea, temperatur	CI
Agua Total			GRACE (2 GRACE-FC	002-2017) D: 100 km (2018-hoy)	
Lluvia			TRMM: 25 km, 3-h GPM: 10 km, 30 m	r (1998-2015) nin (2014 – hoy)	
Humedad del Suelo			Aqua (AMSR-E): rc (AMSR): 25 km (20 SMAP: radar banc SMOS: 25 km (2009	ıdar banda-c (2002-2015); 02-2011) la-L (2015); 36 km (2015-hoy) ?-hoy)	ACE-2 Farger on the COE Ages - Season
Humedad Lluvia	Nimbus-7 (SMN DMSP-F8-13 (SS	1R): Banda-c 150 km (197 M/I) y DMSP-F15-18 (SSN	78 – 1987) IIS): humedad, lluvia, nub	es 12-50 km (1987–hoy)	
Vegetación	NOAA-15 (, Terra/Aqua	AVHRR): NDVI, tempero (MODIS): NDVI, tempe	atura superficial 4 km (1 eratura superficial 1 km	980 - hoy) (2000 - hoy)	NOS OF
Temperatura Superficial	Landsat: Vege	etación, Uso del Suelo-	Cobertura Terrestre 30 r	n	
	1980	1990	2000	2010	2020
	a kemole sensing Iral	ning riogiam			6

Objetivo

Sistema Hidrológico de Apoyo para Decisiones de la Cuenca Inferior del Mekong (LMRB por sus siglas en inglés)

- El modelo SWAT para la The LMRB (superficie drenada de ~ 495,000 km²) sigue de cerca la configuración subcuenca MRC [Rossi et al., 2009]
- Se adoptó ASTER, un modelo de elevación digital (digital elevation model o DEM) con una resolución cuadricular de 1 arco segundo
- Se implementó la versión 1.2 del Harmonized World Soil Database [FAO et al., 2012]
- Se utilizaron productos de datos MODIS, NDVI, Landsat TM y ETM+ data para obtener este mapa de usos del suelo

Datos de descarga obtenidos de la Mekong Rever Comisión (MRC, <u>www.mrcmekong.org</u>)

Se interpolaron datos de descarga actualizados con datos de nivel observados obtenidos del Asían Preparadnos Desastre Center (ADPC, <u>www.adpc.net</u>)

Rossi, et. al., 2009. Hydrologic evaluation of the lower Mekong River Basin with the soil and water assessment tool model. IAEJ 18, 1-13, <u>http://114.255.9.31/iaej/EN/Y2009/V18/I01-02/1</u>

SWAT: Soil and Water Assessment Tool*

https://swat.tamu.edu/

- SWAT es un modelo hidrológico conceptual a nivel de cuenca hidrológica diseñado para enfrentar los retos asociados con la gestión hídrica, el sedimento, cambio climático, cambio de usos del suelo y rendimiento químico agrícola
- Las aplicaciones de SWAT varían de nivel de campo a nivel de cuenca a nivel continental
- Los componentes del modelo SWAT son hidrología, clima, sedimentación, temperatura del suelo, crecimiento de cultivos, nutrientes, plaguicidas y gestión agrícola

Esquema de la historia del desarrollo y adaptaciones del modelo SWAT (adaptado de Grossman**)

^{**} Referencia: Gasman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G., 2007. The soil and water assessment tool: Historical development, applications, and future research directions. T ASABE 50, 1211-1250, https://doi.org/10.13031/2013.23637

Tipos de Uso del Suelo/Cobertura Terrestre* en el LMB que Pueden Afectar la Hidrología y los Resultados del Modelo Hidrológico SWAT

- Tipos de LULC Agrícolas
 - Arroz pluvial vs. irrigado (una cosecha vs. doble-cosecha)
 - Otros cultivos anuales (ej., cultivos en hilera, caña de azúcar, yuca)
 - Cultivo permanente vs. itinerante
- Tipos de LULC Forestales
 - Principalmente latifoliados con diferentes niveles de caducifolios
 - Gradiente de bosques casi virgen a altamente perturbados
 - Hábitats de bambú
 - Plantaciones forestales industriales (ej., caucho)
- Otras clases de LULC
 - Agua, yermo, urbano

Fotos de diferentes tipos de LULC en la cuenca inferior del Mekong adquiridas de la Mekong River Commission

*LULC por sus siglas en inglés (Land Use Land Cover)

Spruce, J., J. Bolton, R. Srinivasan, and V. Lakshmi. 2018. "Developing Land Use Land Cover Maps for the Lower Mekong Basin to Aid Hydrologic Modeling and Basin Planning." Remote Sensing, 10 (12): 1910 [10.3390/rs10121910]

Flujos de Trabajo para Derivar Mapas LULC

- Datos Landsat del mosaico de la temporada seca de 2011
- Nías MODIS de 32 días de la temporada seca se utilizaron para mapear el bosque
- Se utilizaron las 12 fechas de los Nías MODIS de 32 días par mapear la agricultura

Spruce, J., J. Bolton, R. Srinivasan, and V. Lakshmi. 2018. "Developing Land Use Land Cover Maps for the Lower Mekong Basin to Aid Hydrologic Modeling and Basin Planning." Remote Sensing, 10 (12): 1910 [10.3390/rs10121910]

Mapa de Cambios de LULC de 1997 a 2010 de la LMB - 9 Clases de LULC por Fecha

La imagen subyacente es extraída de imágenes aéreas/satelitales de Bing accedidas a través de QGIS

Proyecto Mapa LULC 2010 vs. Mapa LULC 1997 Recodificado de la MRC

(ej., Subset de SB7)

- El mapa LULC 2010 muestra varios tipos de agricultura permanente mientras que el mapa LULC 1997 tiene solo un tipo general de agricultura permanente
- El mapa LULC 2010 tiene una unidad mínima de mapeo más fina con respecto al mapa de 1997 (0,0625 km² vs. 0,5 km²)
- El mapa LULC 2010 también muestra más áreas urbanas (rojo en los mapas superiores)

Fuente de las imágenes: Remote Sensing 2018, 10, 1910; doi: 10.3390/rs10121910

Resumen: Puntos Clave

- El proyecto actualizó los mapas LULC para la cuenca inferior del Mekong que se están utilizando en los modelos SWAT MRC para los SBs 1-8
 - En total, 18 tipos de LULC se mapearon para la actualización del mapa anterior de 1997
- Los resultados de las evaluaciones de la precisión del LULC para los SBs 4 y 7 mostraron una alta concordancia con datos de referencia (80%+)
 - El mapa LULC 2010 incluyó más tipos de cultivo permanentes que el mapa LULC 1997
 - El arroz se mapeó en el mapa LULC 2010 según el número de cosechas al año
 - Datos del MODIS NDVI para la temporada seca facilitaron el mapeo de los tipos básicos de bosques latifoliados caducifolios y perennifolios
 - Datos Landsat multiespectrales de la temporada seca facilitaron el mapeo de tipos de LULC más escasos, finos y escalados (ej., urbano y aguas abiertas)
- Los mapas LULC del proyecto se están utilizando en modelos SWAT de la LMB para ayudar con la gestión del agua y de desastres
- Para más información, vea la monografía en Remote Sensing 2018, 10, 1910: doi:10.3390/rs10121910

SWAT- Parámetros de Calibración

Parámetro	Descripción	Rango			
Precipitación	Factor de corrección	r_Precipitation(SB#s){}.pcp -0.6 0.01			
Flujos Altos					
CN2	Número de curva SCS inicial a condición de humedad II	r_CN2.mgt -10 10			
AWC	Capacidad de agua disponible para la capa del suelo	rSOL_AWC().sol -10 10			
ESCO	Factor de compensación de evaporación del suelo	vESCO.bsn 0.5 0.9			
Flujos Básicos					
GW_DELAY	Tiempo de demora de aguas subterráneas	aGW_DELAY.gw -30 60			
REVAPMN	Que ocurra la percolación hasta el acuífero profundo	aREVAPMN.gw -750 750			
GWQMN	Profundidad umbral del agua en el acuífero pando	a_GWQMN.gw -1000 1000			
GW_REVAP	Coeficiente "revap" de aguas subterráneas	vGW_REVAP.gw 0.02 0.1			
RCHRG_DP	Fracción de percolación al acuífero profundo	aRCHRG_DP.gw -0.05 0.05			
GWHT	Altura inicial de las aguas subterráneas	v_GWHT.gw 0.0 1.0			

Mohammed, I. N., Bolten, J., Srinivasan, R., & Lakshmi, V. (2018). Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations. Remote Sensing, 10(6), 885. http://dx.doi.org/10.3390/rs10060885

Modelo SWAT con Datos Climáticos por Teledetección de Entrada

 Temperatura del aire mínima y máxima procesadas utilizando el GLDAS Noah Land Surface Model L4 3 cada hora 0,25 x 0,25 grado V2.0

Mohammed, I. N., J. D. Bolten, R. Srinivasan, et al. 2018. "Ground and satellite based observation datasets for the Lower Mekong River Basin." Data in Brief, 21: 2020-2027 [10.1016/j.dib.2018.11.038]

Calibración de Flujo Torrencial con en Modelo SWAT

 Calibración secuencial de la ensenada del Alto Mekong a Kratie, Camboya

Mohammed, I. N., Bolten, J., Srinivasan, R., & Lakshmi, V. (2018). Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations. Remote Sensing, 10(6), 885. http://dx.doi.org/10.3390/rs10060885

Modelos SWAT a Base de Teledetección y Medidores – Comparación de Flujo Torrencial

Sub Cuenca (SB)	NSE (Modelo de Teledet.)	NSE (Modelo con datos In-Situ)
SB#1 Chiang Sean	0.96	0.91
SB#2 Luang Prabang	0.94	0.70
SB#3 Vien Tiane	0.91	0.75

Sub Cuenca #	Qerr % (Modelo de Teledet.)	Qerr % (Modelo con Datos In Situ)
SB#1 Chiang Sean	0.81	0.53
SB#2 Luang Prabang	-0.29	2.02
SB#3 Vien Tiane	0.88	-3.31

Descarga mensual promedio observada y simulada en m³/s en seis subcuencas en calibración del modelo LMRB (TRMM)

Mohammed, I. N., Bolten, J., Srinivasan, R., & Lakshmi, V. (2018). Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations. Remote Sensing, 10(6), 885. http://dx.doi.org/10.3390/rs10060885

Modelo de Teledetección (GPM) y Modelo LMRB SWAT

- Los datos de precipitaciones GPM-IMERG son la base del modelo LMRB como verificación
- El modelo SWAT puede explicar entre el 71% y el 96% de la variabilidad en la descarga mensual de Chiang Sean, Tailandia, a Kratie, Camboya, cuando se orienta en base a GPM-IMERG

Mohammed, I. N., Bolten, J., Srinivasan, R., & Lakshmi, V. (2018). Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations. Remote Sensing, 10(6), 885. <u>http://dx.doi.org/10.3390/rs10060885</u>

Le, H., J. Sutton, D. Bui, J. Bolten, and V. Lakshmi. 2018. "Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam." Remote Sensing, 10 (10): 1582 [10.3390/rs10101582]

Descarga mensual promedio observada y simulada en m³/s en seis subcuencas en calibración del modelo LMRB (TRMM)

Cambios en la Variabilidad del Flujo Torrencial en la Cuenca Inferior del Mekong

- Análisis de sensibilidad para el índice Colwell de previsibilidad (P) para la cuenca inferior del Mekong
- Previsibilidad observada durante del período 2001 a 2015 en SB4, SB5 y SB6 es 0,342, 0,325 y 0,317 respectivamente
- El cambio de la previsibilidad (eje y) reporta el cambio de previsibilidad escalado, es decir, $(P_{sim} - P_{obs})/P_{obs} \times 100$

Mohammed, I.N., Bolten, J.D., Srinivasan, R., Lakshmi, V., 2018. Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. J. Hydrol. 564, 559- 573, https://doi.org/10.1016/j.jhydrol.2018.07.030

Análisis de Disturbios en los Flujos Altos

Mohammed, I.N., Bolten, J.D., Srinivasan, R., Lakshmi, V., 2018. Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. J. Hydrol. 564, 559-573, https://doi.org/10.1016/j.jhydrol.2018.07.030

NASAaccess – Herramienta para Descargar y Reformatear Productos de Datos de Observación de la Tierra de la NASA

http://tethys-servir.adpc.net/apps/nasaaccess2/

Mohammed, I.N., Bolten, J., Srinivasan, R., Lakshmi, V., 2018. Improved hydrological decision support system for the Lower Mekong River Basin using satellite-based earth observations. Remote Sens. 10, 885, https://doi.org/10.3390/rs10060885

NASAaccess Ha Sido Lanzado Oficialmente por la NASA en Su Terminal Github

https://github.com/nasa/NASAaccess

NASAaccess is R package that can generate gridded ascii tables of climate (CIMP5) and weather data (GPM, TRMM, GLDAS) needed to drive various hydrological models (e.g., SWAT, VIC, RHESSys, ..etc)

🕝 5 commits	₽ 1 branch	♡ 0 releases	L contributor	খাঁুত View license
Branch: master - New pull requ	iest		[Find File Clone or download -
imohamme removing devtools f	rom installation requirements			Latest commit d6dabee a day ago
R R	init			3 days ago
🖿 man	removing devtools	from installation requirements		a day ago
DS_Store	init			3 days ago
.Rbuildignore	init			3 days ago
.gitignore	init			3 days ago
	Adding NASA open	source agreement license		a day ago
	Adding NASA open	source agreement license		a day ago
	init			3 days ago
	removing deuteele	from installation requirements		a day aga

Examinando Escenarios de Reservorios

- Baseline (December 2016) este es el mismo que el escenario de desarrolo de base de Regan et al
- Current (October 2018) el escenario básico más el reservorio actualmente encomendado Sesan II y el resorvorio completado Nam Kong 2 en Laos
- Under contract/construction incluye los escenarios anteriores más las represas que están en la etapa de construcción. Esto incluye Alto Kontum, Nam Kong 3, Xe Nam Noy 2 - Xe Katam 1
- Contracted/licensed esto incluye las represas en los escenarios anteriores y las represas autorizadas por la MRC: Xe Katam; Xekong 4; Nam Kong 1 y Xe Kaman 4
- Lower Sekong Bajo contrato/construcción más bajo Sekong
- Lower Srepok 3 Bajo contrato/construcción más Lower Srepok 3
- Camboya Sesan and Srepok Una alternativa al bajo Sekong. Bajo construcción más Lower Srepok 3, lower Sesan 3 y lower Srepok 2

Evaluación de Daños por Inundaciones en Tiempo Caso Real

De Datos a Decisiones

Fayne, J. V., J. D. Bolten, C. S. Doyle, et al. 2017. "Flood mapping in the lower Mekong River Basin using daily MODIS observations." International Journal of Remote Sensing, 38 (6): 1737-1757 [10.1080/01431161.2017.1285503]

Ahamed, A. y J. Bolten. 2017. "A MODIS-based automated flood monitoring system for southeast asia." International Journal of Applied Earth Observation and Geoinformation, 61: 104-117 [10.1016/j.jag.2017.05.006]

Ahamed, A., J. D. Bolten, C. Doyle y J. Fayne. 2016. "Near Real-Time Flood Monitoring and Impact Systems." Remote Sensing of Hydrological Extremes, 105-118 [10.1007/978-3-319-43744-6] Fayne, J., J. Bolten, V. Lakshmi y A. Ahamed. 2016. "Optical and Physical Methods for Mapping Flooding with Satellite Imagery."Remote Sensing of Hydrological Extremes, 83-103 [10.1007/978-3-319-43744-6_5]

Resumen de Validación

- Exactitud general : 87%
- Pixeles analizados: > 7 millones
- Variabilidad de Exactitud: 79% 98%
- Condiciones: Inundado, No-inundado
- Sensores: (1) Envisat ASAR, (2) Radarsat – 2, (3) TerraSAR-X, (4) Disaster Monitoring Constellation (DMC)

Ahamed, A. y J. Bolten. 2017. "A MODIS-based automated flood monitoring system for southeast asia." International Journal of Applied Earth Observation and Geoinformation, 61: 104-117 [10.1016/j.jag.2017.05.006]

Mapeo de Inundaciones en Tiempo Casi Real

Mapas de Inundaciones Operativos en Tiempo Casi Real basados en anomalías relativas en el NDVI de datos MODIS de 250 m

Partes Interesadas: Mekong River Commission

Doyle, C., J. Boten, J. Spruce, "Flood Inundation Mapping in the Lower Mekong River Basin Using Multi-Temporal MODIS Observations," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. (in review)

Mapeo de Inundaciones en Tiempo Casi Real

Mapas de Inundaciones Operativos en Tiempo Casi Real basados en anomalías relativas en el NDVI de datos MODIS de 250 m

Partes Interesadas: Mekong River Commission

Doyle, C., J. Boten, J. Spruce, "Flood Inundation Mapping in the Lower Mekong River Basin Using Multi-Temporal MODIS Observations," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. (in review)

Marco de Daños

Estimación de la Profundidad de las Inundaciones

- Aplicar método de Cham et al. (2015)*
- Extraer la extensión de las inundaciones de una herramienta para la detección
- Generar puntos alrededor del perímetro
 - Muestrear valores de elevaciones del DEM
- Produce Triangulated irregular Network (TIN) para visualizar elevación de la superficie del agua

Oddo, P., A. Ahamed, and J. Bolten. 2018. "Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin." Hydrology, 5 (2): 23 [10.3390/hydrology5020023]

* Cham, T. C., Mitani, Y., Fujii, K. & Ikemi, H. Evaluation of flood volume and inundation depth by GIS midstream of Chao Phraya River Basin, Tailandia. in WIT Transactions on The Built Environment (ed. Brebbia, C. A.) 1, 1049–1060 (WIT Press, 2015).

Marco de Daños

Estimación de la Profundidad de las Inundaciones

- Aplicar método de Cham et al. (2015)*
- Extraer la extensión de las inundaciones de una herramienta para la detección
- Generar puntos alrededor del perímetro
 - Muestrear valores de elevaciones del DEM
- Produce Triangulated irregular Network (TIN) para visualizar elevación de la superficie del agua

Oddo, P., A. Ahamed, and J. Bolten. 2018. "Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin." Hydrology, 5 (2): 23 [10.3390/hydrology5020023]

* Cham, T. C., Mitani, Y., Fujii, K. & Ikemi, H. Evaluation of flood volume and inundation depth by GIS midstream of Chao Phraya River Basin, Tailandia. in WIT Transactions on The Built Environment (ed. Brebbia, C. A.) 1, 1049–1060 (WIT Press, 2015).

Marco de Daños

Estimación de la Profundidad de las Inundaciones

- Utiliza el DEM Multi-Error-Removed Improved-Terrain (MERIT)⁶
- Un incremento del ~20% de la extensión de tierra mapeada con una exactitud vertical de dos metros o mejor

6. Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., ... Bates, P. D. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 2017GL072874. https://doi.org/10.1002/2017GL072874

Ubicación y Objetivos

Figure 1. (A) Map of Mekong River Basin countries with flood extent from 2011 event. (B) Study extent showing results of the triangular interpolated network (TIN). (C) Depth raster produced by inundation depth analysis.

Inundaciones en Asia Sudoriental en 2011

- Fenómeno de La Niña hubo un incremento del 143% de lluvia
- Inicio del monzón sudoccidental

Objetivos

- Utilizar este evento de inundación de 2011 como estudio de caso para demostrar factibilidad
- Integrar el marco al plataforma en tiempo casi real de Project Mekong

Oddo, P., A. Ahamed y J. Bolten. 2018. "Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin." Hydrology, 5 (2): 23 [10.3390/hydrology5020023]

Cobertura Terrestre/Uso del Suelo (Land Cover / Land Use)

Cobertura Terrestre Actualizada

- Producida por MRC (2010)
- Derivada de Landsat-5, resolución 30 m
- 19 clasificaciones de cobertura terrestre únicas
- 9.357 puntos de investigación recopilados para validar

Figure 3. (A) Land use/land cover (LULC) map produced by Mekong River Commission (MRC, 2010). (B) Inset showing study extent and LULC details considered in this analysis. (C) Close view of the Tonle Sap Lake region, Cambodia.

Población / Infraestructura

Figure 4. Population density (left), regional road networks (center), and building centroid and footprint data (right, below) considered in this study.

Datos Socioeconómicos

- NASA Socioeconomic Data and Applications Center (SEDAC)
 - Gridded population density (GPW)
 - Global gridded roads (gROADS)

Datos de Fuente Abierta

- Ubicación (centroides) y huella de edificios:
 - OpenStreetMaps

Oddo, P., A. Ahamed y J. Bolten. 2018. "Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River

Calcular Daños

0	0	1	2	2	3
1	3	2	1	2	5
0	5	4	1	1	2
0	1	0	2	2	3
1	2	5	5	3	4
1	2	3	4	5	5
Profundidad (m)					

5 6 6 6 8 9					
5	5	6	6	7	9
2	5	5	5	5	7
2	1	1	4	5	7
2	1	1	4	5	5
1	1	2	4	5	5

Modelo de Daños

"Método Estándar"

$$S = \sum_{i=1}^{n} a_i n_i S_i$$

donde

- a_i = factor de daños categoría I
- n_i = número de unidades en la categoría I
- S_i = daño máximo por unidad en la categoría I

Kok, M., Huizinga, H. J., Vrouwenfelder, A. & Barendregt, A. Standard method 2004. Damage and casualties caused by flooding. (Rijkswaterstaat, 2004).

Oddo, P. C., Ahamed, A., & Bolten, J. D. (2018). Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin. Hydrology, 5(2), 23. https://doi.org/10.3390/hydrology5020023

Valores Máximos de Daños (S_i)

Uso del suelo	USD/m ²	Fuente
Agricultura		
Arroz, totalmente destruido	0.078	
Cultivo, totalmente destruido	0.109	
Otras Plantas, totalmente destruidas	0.147	Leenders et al. (2009)
Arroz, parcialmente destruido	0.027	
Cultivo, parcialmente destruido	0.030	
Otras Plantas, parcialmente destruidas	0.030	
Pesca		
Piscinas de piscicultura y		
arrozales	0.639	Loopdors at al. (2009)
Camarones y otros mariscos	1.706	Leenders et di. (2007)
Pescados de agua dulce	0.048	
Infraestructura		
Área urbana	29	
Área rural	22	
Camino provincial	80	
Camino nacional	400	Giang et al. (2009)
Ferrocarril	1000	
Arroz	0.044	
Otros cultivos	0.02	
Bosque	0.84	

Curvas Profundidad-Daños (Depth-Damage)

Factor de Daño (a_i): Específico Para el Arroz

Figure 5. Damage factor curves for agriculture, forest, and infrastructure classes (upper) and rice varieties (lower) found in the Lower Mekong Basins (LMB). Curves digitized and adapted from Chen

(2007) [49].

Oddo, P. C., Ahamed, A., & Bolten, J. D. (2018). Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin. Hydrology, 5(2), 23. https://doi.org/10.3390/hydrology5020023

Visualizando Impactos

Uso del Suelo	Área (km²)	Daños (USD)
Arroz Alternado con Cultivo Anual	13,355.05	645,235,056
Cultivo Anual	1502.03	126,696,853
Cultivo Itinerante	38.02	3,073,550
Huerto	332.35	6,572,509
Bosque Inundado	3542.54	2,889,181,644
Pastizal	1938.22	44,535,518
Matorral	1398.63	34,103,750
Urbano	275.17	710,538,630
Suelo Descubierto	68.65	0
Plantación Industrial	1.42	24,608
Bosque de Caducifolios	8.43	2,905,977
Bosque de Perennifolios	2.28	1,530,465
Plantación Forestal	-	-
Bosque de Bambú	11.35	8,798,317
Bosque Conífero	-	-
Manglar	1.71	842,254
Pantano/Ciénaga	482.85	12,703,670
Acuacultura	8.32	211,169
Acuacultura Alternada con Arroz	26.39	27,770
Total	22,993	4,486,981,740

Oddo, P. C., Ahamed, A., & Bolten, J. D. (2018). Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin. Hydrology, 5(2), 23. https://doi.org/10.3390/hydrology5020023

Visualizando Impactos

Uso del Suelo	Área (km²)	Daños (USD)
Arroz Alternado con Cultivo Anual	13,355.05	645,235,056
Cultivo Anual	1502.03	126,696,853
Cultivo Itinerante	38.02	3,073,550
Huerto	332.35	6,572,509
Bosque Inundado	3542.54	2,889,181,644
Pastizal	1938.22	44,535,518
Matorral	1398.63	34,103,750
Urbano	275.17	710,538,630
Suelo Descubierto	68.65	0
Plantación Industrial	1.42	24,608
Bosque de Caducifolios	8.43	2,905,977
Bosque de Perennifolios	2.28	1,530,465
Plantación Forestal	-	-
Bosque de Bambú	11.35	8,798,317
Bosque Conífero	-	-
Manglar	1.71	842,254
Pantano/Ciénaga	482.85	12,703,670
Acuacultura	8.32	211,169
Acuacultura Alternada con Arroz	26.39	27,770
Total	22,993	4,486,981,740

Figure 6. Results of damage assessment for land cover categories. Color gradient represents severity of damages in USD/m².

Oddo, P. C., Ahamed, A., & Bolten, J. D. (2018). Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin. Hydrology, 5(2), 23. https://doi.org/10.3390/hydrology5020023

Limitación del Sistema Actual > Trabajo en el Futuro

Tangibles

Intangibles

Datos Actualizados

- Sets de datos socioeconómicos
- Valuaciones localmente
 específicas
- Información geoespacial mejorada

Retroalimentación

- ¿Qué información es útil?
- ¿Cómo se utilizaría??

Directos

- Daños a infraestructura
 - Caminos globales
 - Infraestr. energética
 - Escuelas y hospitales
 - Huellas de edificios
- Impactos a poblaciones
- Pérdidas de vida humana
- Efectos sobre la biodiversidad
- Pérdidas de servicios ecosistémicos (ej.,
- vegetación ribereña)
- Sufrimiento psicológico

Indirectos

- Producción agrícola
- Pérdidas de ingresos de industrias/turismo
- Costos de evacuaciones de emergencia
- Interrupción de la educación

- Impactos al lugar y la cultura
- Resiliencia Comunitaria

Taller Regional sobre el Servicio de Monitoreo de Inundaciones en Tiempo Casi Real

Bangkok, Tailandia (24 y 25 de enero de 2018)

Evaluación de Daños en Laos

5 days ago

6 days ago

a year ago

Snowflake a year ago

Show only Left

Show only Right

The Sentinel-1 satellite from the European Space Agency (ESA) Copernicus program observed the area surrounding the Xepian-Xe Nam Noy dam in Laos before (left) and after (right) the dam's July 23, 2018, failure. The left image is from July 17. In the right image, from July 25, the reservoir behind the dam has been significantly reduced in size, and the river downstream of the dam (to the left of the reservoir) is more apparent, with brown hues indicating potential flooding.

Credits: NASA Disasters/Marshall Space Flight Center/Alaska Satellite Facility; contains modified Copernicus Sentinel data (2018) processed by ESA

Sistema de Evaluación de Daños de Inundaciones Activado para la Rotura de Una Presa en Laos el 25 de Julio

Forest Plantation

Bamboo Forest

Grassland

Shrubland

Según las cifras

- >3.740 personas impactadas
- 1,349 edificios
- 373 km de caminos afectados
- US\$54 millones de daños posibles a la infraestructura y cobertura terrestre

Investigador Principal: John Bolten (NASA GSFC) Científicos del Proyecto: Perry Oddo (NASA GSFC), Aakash Ahamed (Stanford U.) Contribuidores: NASA SERVIR, NASA MSFC, SIG, ADPC

Permanent Water

Sistema de Evaluación de Daños de Inundaciones Activado para la Rotura de Una Presa en Laos el 25 de Julio

- Se utilizaron datos de Sentinel 1 y ALOS 2 para derivar el mapa de inundaciones para las áreas afectadas en Laos (fuentes: NASA SERVIR, NASA MSFC, SIG, U. de Houston, ADPC)
- Se estimó la profundidad de las inundaciones utilizando el Triangular Interpolated Network extraído de elevaciones del MERIT DEM
- Datos socioeconómicos de OpenStreetMap y WorldPop ayudaron a estimar el impacto de las inundaciones en basa a las estimaciones de la profundidad
- Las estimaciones de daños se calcularon utilizando la profundidad de las inundaciones y el "método estándar" neerlandés

Investigador Principal: John Bolten (NASA GSFC) Científicos del Proyecto: Perry Oddo (NASA GSFC), Aakash Ahamed (Stanford U.) Contribuidores: NASA SERVIR, NASA MSFC, SIG, ADPC

Sistema de Evaluación de Daños de Inundaciones Activado para la Rotura de Una Presa en Laos el 25 de Julio

Valor de las Observaciones de la Tierra en Tiempo Casi Real

VALUE IN HEALTH 17 (2014) 555-560

Time Is Money, But How Much? The Monetary Value of Response Time for Thai Ambulance Emergency Services

Henrik Jaldell, PhD^{1,*}, Prachaksvich Lebnak, MD², Anurak Amornpetchsathaporn, MD²

¹Department of Economics, Karlstad University, Karlstad, Sweden; ²Emergency Medical Institute Thailand, Bangkok, Thailand

ABSTRACT

Objective: To calculate the monetary value of the time factor per minute and per year for emergency services. **Methods:** The monetary values for ambulance emergency services were calculated for two different time factors, response time, which is the time from when a call is received by the emergency medical service call-taking center until the response team arrives at the emergency scene, and operational time, which includes the time to the hospital. The study was performed in two steps. First, marginal effects of reduced fatalities and injuries for a 1-minute change in the time factors were calculated. Second, the marginal effects and the monetary values were put together to find a value per minute. **Results:** The values were found to be 5.5 million Thai bath/min for fatality and 326,000 baht/min for severe injury. The total monetary value for a 1-minute improvement for each dispatch, summarized over 1 year, was 1.6 billion Thai baht using response time. Conclusions: The calculated values could be used in a cost-benefit analysis of an investment reducing the response time. The results from similar studies could for example be compared to the cost of moving an ambulance station or investing in a new alarm system.

Keywords: cost-benefit, emergency medical service, medicine, response time.

Copyright © 2014, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.

Valor de las Observaciones de la Tierra en Tiempo Casi Real

VALUE IN HEALTH 17 (2014) 555-560

Henrik Jaldell, PhD^{1,*}, Prachaksvich Lebnak, MD², Anurak Amornpetchsathaporn, MD²

¹Department of Economics, Karlstad University, Karlstad, Sweden; ²Emergency Medical Institute Thailand, Bangkok, Thailand

ABSTRACT

Objective: To calculate the monetary value of the time factor per minute and per year for emergency services. Methods: The monetary values for ambulance emergency services were calculated for two different time factors, response time, which is the time from when a

call is received by the emergency medical serv until the response team arrives at the emerger tional time, which includes the time to the hoperformed in two steps. First, marginal effects and injuries for a 1-minute change in the time fa Second, the marginal effects and the monet together to find a value per minute. Results: The severe injury. The total monetary value for a 1-minute improvement for each dispatch, summarized over 1 year, was 1.6 billion Thai baht using response time. Conclusions: The calculated values could be used in a cost-benefit analysis of an investment reducing the response

valor monetario total de una mejora de un minuto para cada despacho, a lo largo de un año, fue de 1,6 millones de baht tailandeses utilizando el tiempo de respuesta.

to be 5.5 million Thai bath/min for fatality and 326,000 baht/min for

Outcomes Research (ISPOR). Published by Elsevier Inc.

Tethys- Aplicación para Visualizar y Compartir Entradas/Salidas del Modelo LMRB SWAT

http://tethys-servir.adpc.net/apps/swat2/

Mohammed, I.N., Bolten, J.D., Srinivasan, R., Lakshmi, V., 2018. Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. J. Hydrol. 564, 559-573, https://doi.org/10.1016/j.jhydrol.2018.07.030

Tethys- Herramienta SWAT

SWAT Data Viewer 3 Select Watershed Lower Mekong Toggle Layers Basins Supplementary Layers

Fuentes de Datos

- Elevación: MERIT DEM (90 m)
- Extensión de Inundaciones:
 - Estudio de caso de 2011: ENVISAT-ASAR Wide Swath Mode (ESA)
 - NRT (implementación futura): Utilizara la salida de la detección de inundaciones de Project Mekong (derivado de NASA LANCE MODIS)
- Cobertura Terrestre: Mekong River Commission
 - En base a Landsat, resolución de 30 m, remuestreado a 90 m
- Infraestructura
 - Huella de edificios: OpenStreetMaps (a través de la interfaz Mapzen)
 - Caminos: Global Roads Open Access Data Set (gROADS), v1 (NASA SEDAC)
- Población:
 - Gridded Population of the World (GPW), v4 (NASA SEDAC)

Mekong River Commission

For Sustainable Development

Home About MRC Mekong Basin Topics Publications News & Events Working with MRC Highlights Data Portal

 Key suggestions to manage risks for Pak Lay

 Read the full story
 1
 2
 3
 4
 5
 II

From 11th to 18th March 2019, water levels along the lower Mekong River from Thailand's Chiang Saen to Lao PDR's Luang Prabang were fluctuated above their long-term averages (LTAs) the same trend as last week, although no rainfall in these areas. The trend from 19th to 25th March 2019 will be gradually slightly increasing and still keep stays above their LTAs. For downstream reaches from Lao PDR's Vientiane to Cambodia's Kompong Cham, the trends will be the same as upstream part. The lower reaches from Cambodia's Phnom Penh at Chaktomuk, koh Khel, Neak Luong to Viet Nam's Tan Chau on the Mekong River and Chau Doc on the Bassac River will be slightly increasing and stay above their LTAs due to the abnormal rainfall in March 2019 in the floodplain area.

ใยง | ฌาอ | ภาษาไทย | Tiếng Việt | Webmail | Contact

GO

Search MRC

Forecasted water level for 22 stations (updated every Monday) more »

Observed water level compared to long term average for 13 stations (updated every Monday) more »

Teledetección Aplicada para una Gestión Transfronteriza de Recursos Hídricos Mejorada Cuenca Inferior del Mekong John D. Bolten¹, I. Mohammed¹, and J. Spruce², P. Oddo¹, V. Lakshmi³, C. L. Hung³, R. Srinivasan⁴, C. Doyle¹, D. Nguyen⁵, Nelson⁴, S. McDonald⁶, C. MeeChaiya⁷,

P.Towashiraporn⁷, S. Pulla⁸, A. (Weigel) Markert⁸

INASA Goddard Space Flight Center
 ²NASA Stennis Space Center
 ³University of South Carolina
 ⁴Texas A&M University
 ⁵Mekong River Commission
 ⁶Brigham Young University
 ⁷Asian Disaster Preparedness Center, Bangkok, Tailandia
 ⁸NASA Marshall Spaceflight Center

Referencias

- Oddo, P., A. Ahamed y J. Bolten. 2018. "Socioeconomic Impact Evaluation for Near Real-Time Flood Detection in the Lower Mekong River Basin." Hydrology, 5 (2): 23 [10.3390/hydrology5020023]
- Mohammed, I., J. Bolten, R. Srinivasan y V. Lakshmi. 2018. "Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations." Remote Sensing, 10 (6): 885 [10.3390/rs10060885]
- Mohammed, I. N., J. D. Bolten, R. Srinivasan y V. Lakshmi. 2018. "Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability." Journal of Hydrology, 564: 559-573 [10.1016/j.jhydrol.2018.07.030]
- Le, H., J. Sutton, D. Bui, J. Bolten y V. Lakshmi. 2018. "Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam." Remote Sensing, 10 (10): 1582 [10.3390/rs10101582]
- Mohammed, I. N., J. D. Bolten, R. Srinivasan, et al. 2018. "Ground and satellite based observation datasets for the Lower Mekong River Basin." Data in Brief, 21: 2020-2027 [10.1016/j.dib.2018.11.038]
- Spruce, J., J. Bolten, R. Srinivasan y V. Lakshmi. 2018. "Developing Land Use Land Cover Maps for the Lower Mekong Basin to Aid Hydrologic Modeling and Basin Planning." Remote Sensing, 10 (12): 1910 [10.3390/rs10121910]
- Fayne, J. V., J. D. Bolten, C. S. Doyle, et al. 2017. "Flood mapping in the lower Mekong River Basin using daily MODIS observations." International Journal of Remote Sensing, 38 (6): 1737-1757 [10.1080/01431161.2017.1285503]
- Ahamed, A. y J. Bolten. 2017. "A MODIS-based automated flood monitoring system for southeast asia." International Journal of Applied Earth Observation and Geoinformation, 61: 104-117 [10.1016/j.jag.2017.05.006]
- Ahamed, A., J. D. Bolten, C. Doyle y J. Fayne. 2016. "Near Real-Time Flood Monitoring and Impact Systems." Remote Sensing of Hydrological Extremes, 105-118 [10.1007/978-3-319-43744-6]

Referencias

- Fayne, J., J. Bolten, V. Lakshmi y A. Ahamed. 2016. "Optical and Physical Methods for Mapping Flooding with Satellite Imagery."Remote Sensing of Hydrological Extremes, 83-103 [10.1007/978-3-319-43744-6_5]
- Bolten, J. y W. Crow. 2012. "Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture." Geophysical Research Letters, 39 (19): L19406 [10.1029/2012GL053470]
- Nicholls, R. J. et al. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes. (Organisation for Economic Cooperation and Development, 2008).
- 2018. "Global Hydrological Cycles and Water Resources." National Academies of Sciences, Engineering, and Medicine. 2018. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, Washington, DC: The National Academies Press [10.17226/24938]
- Rossi, et. al., 2009. Hydrologic evaluation of the lower Mekong River Basin with the soil and water assessment tool model. IAEJ 18, 1-13, http://114.255.9.31/iaej/EN/Y2009/V18/I01-02/1
- Gassman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G., 2007. The soil and water assessment tool: Historical development, applications, and future research directions. T ASABE 50, 1211-1250, https://doi.org/10.13031/2013.23637
- Cham, T. C., Mitani, Y., Fujii, K. y Ikemi, H. Evaluation of flood volume and inundation depth by GIS midstream of Chao Phraya River Basin, Thailand. in WIT Transactions on The Built Environment (ed. Brebbia, C. A.) 1, 1049–1060 (WIT Press, 2015).
- Kok, M., Huizinga, H. J., Vrouwenfelder, A. & Barendregt, A. Standard method 2004. Damage and casualties caused by flooding. (Rijkswaterstaat, 2004).

