

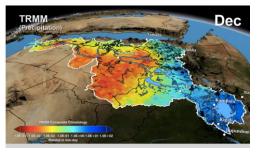
Applications of Remote Sensing for Monitoring Water Budget Within River Basins

Amita Mehta and Sean McCartney

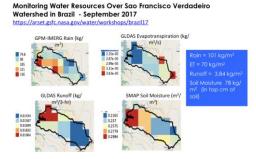
3 April 2019

Training Outline

13 March 2019 Overview of Remote Sensing Data For River Basin Monitoring


http://wwf.hu/en/the-river-basin-management-plan

27 March 2019 Applications of Remote Sensing for River Basin Monitoring: Mekong Basin


https://earthobservatory.nasa.gov/images/91761/a-newreservoir-in-cambodia

20 March 2019 Applications of Remote Sensing for River Basin Monitoring: Nile Basin

https://svs.gsfc.nasa.gov/4044

3 April 2019 Surface Fresh Water Budget Estimation

https://arset.gsfc.nasa.gov/water/workshops/brazil17

Session-4 Outline

- Review of remote sensing data sources for surface water budget components in a river basin
- Estimation of water budget
 - Demonstration of data access and analysis in:
 - Potomac River Basin (USA)
 - Parana River Basin (Argentina, Bolivia, Brazil, Paraguay)
- Summary

Homework and Certificate

Homework will be available after Sessions 2 and 4 from:

https://arset.gsfc.nasa.gov

- Answers must be submitted via Google Form
- Due dates: 4 April (Homework 1) & 17 April (Homework 2)
- Certificate of Completion will be awarded to those who:
 - Attend all webinars
 - Complete homework assignments
- You will receive certificates approximately two months after the completion of the course from: marines.martins@ssaihq.com

Review of Remote Sensing Data Sources for Surface Water Budget Components in a River Basin

Monitoring Water Availability In River Basins

- Monitoring water availability in a basin water flow in streams within the basin requires information/observations/modeling of water budget components in the basin
- Water flow in a stream/river depends on the following components in the watershed contributing to the flow:
 - Precipitation
 - Evaporation and Transpiration
 - Infiltration
 - Surface water: soil moisture, reservoirs, and groundwater storage
 - Runoff

Satellites and Sensors for Water Budget Components

Satellites	Sensors	Spectral Measurements	Water Budget Component	
TRMM & GPM	Microwave Radiometer and RADAR TMI, PR GMI, DPR	TMI: 10-85 GHz GMI: 10-183 GHz PR and DPR (Ku and Ka)	Precipitation	
Terra & Aqua	MODIS	Visible, Near IR, Middle IR	Snow Cover, Evapotranspiration	
Landsat 7, 8	TM, ETM+, OLI	Visible, Near IR, Middle IR, Thermal IR	Evapotranspiration	
SMAP	Microwave Radiometer	L-Band	Soil Moisture	
GRACE & GRACE-FO	Microwave Radar	K-Band	Groundwater	
Jason 2, 3	Altimeter	C-Band and Ku-Band	Reservoir Height	

TMI: TRMM Microwave Imager

PR Precipitation Radar

GMI: GPM Microwave Imager

DPR: Dual-frequency Precipitation

Radar

MODIS: MODerate Resolution Imaging

Spectroradiometer TM: Thematic Mapper

ETM+: Enhanced Thematic Mapper OLI: Operational Land Imager

For details see **Session 2B** on https://arset.gsfc.nasa.gov/webinars/fundamentals-remote-sensing

Global Land Data Assimilation System (GLDAS) for Water Budget Data

http://ldas.gsfc.nasa.gov/gldas/

A water and energy balance model with assimilation of remote sensing data

Inputs:

- Rainfall: TRMM and multi-satellite based data
- Meteorological data: global reanalysis and observations-based data from Princeton University
- Vegetation mask, Land/Water mask, Leaf Area Index (LAI): MODIS (GLDAS-2)
- Clouds and Snow (for surface radiation): NOAA and DMSP satellites

Integrated outputs include:

- Soil Moisture
- Evapotranspiration
- Surface/Sub-surface runoff
- Snow water equivalent

Reference: Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3):381–394.

Estimation of Water Budgets

Water Budget

https://water.usgs.gov/watercensus/AdHocComm/Background/WaterBudgets-FoundationsforEffectiveWater-ResourcesandEnvironmentalManagement.pdf

The water-budget equation for a small watershed can be expressed as:

*Pr = ET + DS + RO + Base Flow

Where

- Pr = Precipitation
- ET = Evapotranspiration
- DS = Change in water storage in the watershed can include surface (snow, soil moisture), and sub-surface (root zone moisture, groundwater components)
- RO = Surface Runoff
- Base Flow = Sub-Surface Runoff
- * Considering that there is no surface, sub-surface, or groundwater net inflow/outflow in the watershed, surface RO and base flow contribute to discharge

Obtain Water Budget Components

The water-budget equation for a small watershed can be expressed as:

$$Pr = ET + DS + RO + Base Flow$$

Water Budget Component	Data Sources	
Pr	GPM-IMERG, GLDAS	
ET	ALEXI, MOD16, GLDAS	
DS	SMAP, GLDAS	
RO, Base Flow	GLDAS	

Next: How to access and analyze these data using web-tools and QGIS?

Obtain Water Budget Components

Water Budget Component	Source	Data Access	
Precipitation	GPM IMERG, GLDAS	¹ Giovanni	
Evapotranspiration	alexi, gldas	² SERVIR Global, ¹ Giovanni	
Soil Moisture	SMAP, GLDAS	³ AppEEARS, ¹ Giovanni	
Snow Melt	GLDAS	¹ Giovanni	
Runoff	GLDAS	¹ Giovanni	


³https://lpdaacsvc.cr.usgs.gov/appeears

¹https://giovanni.gsfc.nasa.gov/giovanni/

¹https://disc.gsfc.nasa.gov/

²http://catalogue.servirglobal.net/Product?product_id=198

Demonstration of Data Access and Analysis

River Basin Network from HydroSHEDS

https://www.hydrosheds.org/; https://hydrosheds.cr.usgs.gov/

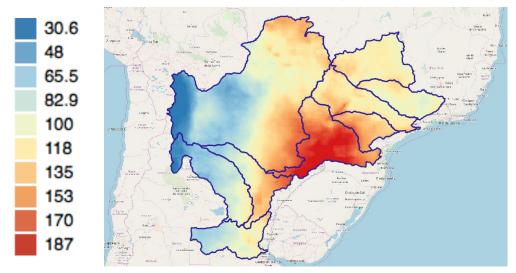
Parana River Basin

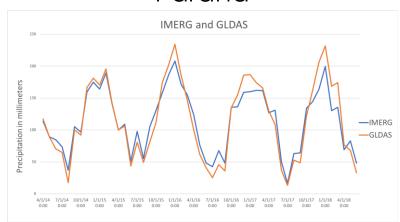
Potomac River Basin

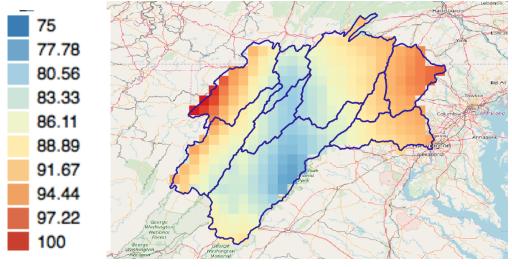
Obtain Water Budget Components For Parana and Potomac **Sub-Watersheds**

Water Budget Component	Source		Data Access
Precipitation	GLE)AS	¹ Giovanni ² Goddard Earth Science Data and Information Service Center (GES DISC)
Evapotranspiration			
Soil Moisture			
Snow Melt			
Runoff			

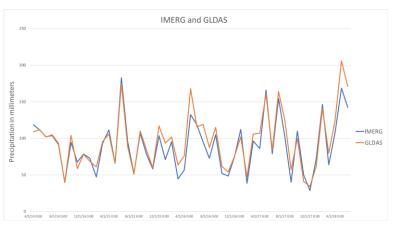
¹https://giovanni.gsfc.nasa.gov/giovanni/


QGIS: https://arset.gsfc.nasa.gov/sites/default/files/users/QGIS-instructions.pdf


²https://disc.gsfc.nasa.gov/


Precipitation Over Parana and Potomac River Basins

GPM-IMERG Mean Precipitation April 2014 – June 2018 (mm/month)



Potomac

IMERG and GLDAS Data Access Using Giovanni

https://giovanni.gsfc.nasa.gov/giovanni/

- Requires: NASA Earthdata Account
- Register using https://urs.earthdata.nasa.gov/home
- Mean and time series of precipitation from IMERG
- Water budget components in Parana and Potomac River Basins: from GLDAS for January 2017 and January 2018

For Monthly Data:

- Precipitation and ET are in kg m⁻² s⁻¹ per second \rightarrow need to multiple by 3600 (s/hr) *24(hr/day)* (#days in month)
- Runoff, and Base Flow are in kg m⁻² accumulated over 3-hour interval \rightarrow need to multiply by 8 (3hr/day)*(#of days in moth)
- See https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS NOAH025 3H.2.1/doc/README GLDAS2.pdf

Summary

- Overview of remote sensing and land surface model data for freshwater components (Week 1)
- Water budget estimation in Nile Basin using the freshwater data (Week 2)
- Water resources and flood monitoring in Mekong Basin using customized hydrology model (SWAT) with remote sensing inputs (Week 3)
- Analysis of freshwater components using QGIS in Parana and Potomac River Basins (Week 4)

Summary

- All freshwater components are available based on remote sensing and/or Earth system models - all data are open source
- Various satellites and sensors with varying spatial and temporal resolutions, coverage, and quality
- Earth system models integrate surface-based and remote sensing observations and provide uniformly gridded, frequent information of water budget components

Summary

- Remote sensing-based data together with GIS analysis help in assessing the water budget in river basins
- Monthly/seasonal and inter-annual variations can be used in water resources and river basin management
- While all the data used in this session are validated with selected surface measurements, regional and local assessment is recommended
- In addition to the water budget component, information about socio-economic characteristics and in situ data (e.g. river discharge, ecosystems) are required for sustainable river basin management

Thank You!