SAR for Mapping Soils and Crops

Heather McNairn and Xianfeng Jiao

14 August 2018
Learning Objectives

By the end of this presentation, you will be able to understand:

• how SAR configurations affect response from soils and crops
• the information content in SAR images relevant to soil and crop conditions
• the optimal sensor parameters for agriculture applications
• how to ingest, pre-process, and process SAR data for use in crop classification and soil moisture estimation
How do Radars Differ?

Longer Wavelengths
- “All weather” sensors (unaffected by cloud cover, haze, dust and all but the heaviest rainfall). Huge advantage for cloud-prone regions and time critical operations.
- Deeper penetration into target relative to visible & IR wavelengths. This can be an advantage or disadvantage.

Active Systems
- Radars provide their own source of energy and are not dependent upon ambient energy; they can operate day or night. This can be important in areas with low illumination such as polar regions.
Radar Geometry

Slant Range
- distance between antenna and target

Ground Range
- distance between the satellite ground track and the target

Azimuth
- along-track direction or distance

Incidence Angle
- angle between line of sight of radar and vertical to the terrain
- backscatter decreases with increasing incident angle
- rate and function of decrease is target specific

Image Credit: radartutorial.eu
Wavelength and frequency are inversely related

\[c = \lambda \nu \]

- \(c \) = speed of light (3x10 m/s)
- \(\lambda \) = wavelength (m)
- \(\nu \) = frequency (cycles per second, Hz)

Phase: the position of a point in time on a waveform cycle

Radar operate at longer frequencies between \(\sim 0.5 \text{ cm} \) to \(\sim 100 \text{ cm} \) in contrast to optical (visible and infrared)

- K \(\sim 1 \text{ cm} \)
- X \(\sim 3 \text{ cm} \), TerraSAR-X and Cosmos SkyMed
- C \(\sim 5 \text{ cm} \), RADARSAT and Sentinel-1
- S \(\sim 10 \text{ cm} \), NISAR
- L \(\sim 23 \text{ cm} \), PALSAR, SAOCOM, NISAR
- P \(\sim 75 \text{ cm} \)
Radar Geometry

Range Resolution

• pulse length: the duration of the transmitted pulse
• range resolution depends on the length of the pulse: shorter pulses result in higher resolutions
• if pulses are shortened, transmitted amplitude must be increased to maintain same total power in the pulse
• use range pulse compression by frequency modulation

Azimuth Resolution (real aperture radar)

• determined by the antenna beam width (A) and distance to the target
• Beam width directly dependent upon wavelength and inversely dependent upon size of antenna (or aperture)
• difficult to achieve fine resolution as requires large antennas, which are difficult to deploy and operate in space

Image Credit: Natural Resources Canada
Radar Polarization

- Polarization: the orientation of the electric field of the electromagnetic wave
- To create a wave we simultaneously feed the radar antenna with components in two orthogonal polarizations
- the electric field will equal the vector sum of the horizontally (H) and vertically (V) polarized
- the phase difference between these two components determines whether the wave will be linearly, elliptically or circularly polarized

Image Credit: Hyperphysics
Linear Polarization

Linearly polarized wave has:
- no phase offset between transmitted H and V components
- propagation in a plane (H for horizontally polarized and V for vertically polarized)
Polarization – Transmit and Receive

- SARs transmit in one or more polarizations and then receive and record the scattered wave in one or more polarizations

- Like-Polarizations
 - HH (horizontal transmit-receive)
 - VV (vertical transmit-receive)

- Cross-Polarizations
 - HV (horizontal transmit-vertical receive)
 - VH (vertical transmit-horizontal receive)
 - HV and VH are theoretically identical and reciprocity is assumed

- Compact-Polarization
 - transmit right circular (R) and receive H and V **coherently** (RH and RV)

- Polarization affects interaction with the target
Fully Polarimetric SAR - What is This?

- transmits and receives two orthogonal polarizations (usually H and V) and retains the phase between these two polarizations
- permits the complete characterization of the scattering field

Why is this important?

- With these coherent systems one can:
 - synthesize any polarization (linear, circular or elliptical)
 - determine degree of polarization
 - decompose the signal to determine the dominant and secondary or tertiary types of scattering
The Target

SARs respond to (basically) two fundamental characteristics of an agriculture target: structure and moisture

Roughness: the statistical variation of the random component of the surface height relative to a reference surface (in cm) (root mean square rms height)

For soils this means

- random roughness caused by tillage (and other farm operations) modified by soil erosion and weathering effects
- periodic row structures caused by tillage and planting

Image Credit: (right) DLR

TerraSAR-X (VV) captured tillage occurring on August 26, 2008
How Does Roughness Affect Backscatter?

• Backscatter will increase as soil roughness increases.
• Bottom line: rougher soils appear brighter in SAR images.

The impact of roughness on backscatter depends on the frequency and incident angle of the SAR. Roughness is a relative concept.

• According to the Rayleigh Criterion, a soil is smooth if
 \[h < \frac{\lambda}{8 \cos \theta} \]

where \(h \) is surface height variation in cm, \(\lambda \) is the wavelength in cm and \(\theta \) is the incident angle in degrees.
It's All Relative

Roughness less than “h” would be viewed as smooth by the SAR

<table>
<thead>
<tr>
<th>Incident Angle of 30°</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TerraSAR-X (3.1 cm)</td>
<td>h < 0.45 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADARSAT-2 (5.6 cm)</td>
<td>h < 0.81 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALSAR (23.6 cm)</td>
<td>h < 3.42 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incident Angle of 50°</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TerraSAR-X (3.1 cm)</td>
<td>h < 0.60 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADARSAT-2 (5.6 cm)</td>
<td>h < 1.09 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALSAR (23.6 cm)</td>
<td>h < 4.59 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Viewed by SAR as rough at 50° Viewed by SAR as smooth at 50°

| TABLE 1: AVERAGE RANDOM ROUGHNESS (s) VALUES-BASED ON SINGLE TILLAGE OPERATIONS [12]. |
|---------------------------------|---------|---------|
| Tillage Operation | s (cm) |
| Large offset disk | 5.0 |
| Moldboard plow | 3.2 |
| Lister | 2.5 |
| Chisel plow | 2.3 |
| Disk | 1.8 |
| Field cultivator | 1.5 |
| Row cultivator | 1.5 |
| Rotary tillage | 1.5 |
| Harrow | 1.5 |
| Anhydrous applicator | 1.3 |
| Rod weeder | 1.0 |
| Planter | 1.0 |
| No till | 0.7 |
| Smooth | 0.6 |

One Complication

• “Look direction” of SAR relative to the row direction impacts the strength of radar return. Creates a so-called “bow-tie” effect.

• The strongest backscatter results are when the SAR look direction is perpendicular to the direction of the rows.

• Row direction effects can result due to the direction of planting, tillage, and harvesting.

• This phenomenon is not present when fields are imaged in cross-polarizations (HV and VH) as these polarizations are responding to volume scattering rather than surface scattering.
 – Among other reasons, this makes HV and VH attractive for vegetation monitoring.
What About Water in the Target?

SAR is known to be sensitive to moisture, but why?

• a microwave will continue to propagate until it encounters a dielectric discontinuity, as happens when water is present in soil

• the dielectric constant is a measure of the ease with which dipolar molecules (such as water) rotate in response to an applied field

• dielectric constant (ε) is a complex value characterizing both the permittivity (ε') (real) and conductivity (ε'') (imaginary) of a material [$\varepsilon = \varepsilon' - j \varepsilon''$]

• when an electric field is applied, free water molecules easily rotate to align with the field

• frictional resistance is low and little energy stored in the rotation is lost when the wave passes and the molecule relaxes. Most of the stored energy is released.

• real dielectric ranges from ~3 (very dry soils) to 80 (water)

Image Credit: Anton Paar
What Does This Mean for SAR?

• a strong positive relationship between real dielectric constant and SAR backscatter
• a strong positive relationship between real dielectric constant and soil moisture
• In a nutshell: more water in the target = higher backscatter = brighter returns
• Applies to ANY target (soil, vegetation etc.)
• penetration depth (δ_ρ) into soil and/or crops is defined by the dielectric (ε), wavelength (λ), and incident angle
• penetration increases with wavelength and is greater when the target (soil or crops) is drier

Image Credit: Canadian Space Agency

Multi-Date RADARSAT-1 Composite Outlook, Saskatchewan (Canada)
Vegetation Effects

The scale is very different from optical

- Scattering of longer-wavelength microwaves is driven by
 a) larger scale structures (size, shape and orientation of leaves, stems and fruit)
 b) the volume of water in the vegetation canopy (at the molecule level)

So why is SAR sensitive to crop type and crop development?

- Crop structure changes significantly from one crop to the next, and as crops move through their growth stages
Scattering from Crops - It's Complicated

• many different types and combinations of scattering can occur in a crop canopy
• a microwave entering a canopy may scatter directly off a leaf, or may scatter from the stem of one crop to the leaf of another, or may make its way to the soil where it scatters from the soil. The wave may also make its way out of the canopy without further scattering, or may hit parts of the canopy on its way out.
• these scattering events determine how much of the energy will return back to the SAR sensor, and how the phase between, for example, H and V components will change (offsets in phase and how random the phase becomes)
• these scattering characteristics tell us what type of crop is present and what the condition is of that crop

1. Multiple volume scattering from within canopy
2. Direct scattering from soil
3. Direct scattering from canopy
4. Multiple scattering between soil and canopy
SAR Configurations Relative to Crop Characteristics

Frequency:
- Canopies can attenuate or scatter microwaves.
- The dominance of one or the other depends on the wavelength relative to the size of the canopy components.
- Scattering occurs when canopy component (such as a leaf) is close to or larger than wavelength.
- Some components (such as heads of wheat) will attenuate microwaves, especially at shorter wavelengths.
- Frequency also affects penetration depth; longer wavelengths penetrate deeper into the canopy and involve more interaction with the soil.
SAR Configurations Relative to Crop Characteristics

What is the best frequency? It depends

- **soil moisture**: longer wavelengths (like L-band) are better as they penetrate deeper into the canopy and interact with soil.

- **crop classification and biophysical modeling**: depends on canopy needs. Enough penetration into canopy (L- or C-band for corn, for example) but not too deep so that we have soil interference (C- or X-band for lower biomass crops like soybeans).
SAR Configurations Relative to Crop Characteristics

Polarization

- affects how microwaves interact with crop
- V-polarized waves couple with vertical structured vegetation and more of the energy is attenuated
- H-polarized waves have greater penetration through the canopy to the underlying soil
- cross-polarizations (HV/VH) are sensitive to the target volume and are not affected by row effects
- **HV or VH** is the single best polarization for either crop identification or crop biophysical estimation
- next best polarization is usually VV
SAR Configurations Relative to Crop Characteristics

Incident Angle

- not as critical for crop identification
- for temporal change detection, do not mix angles
- for biophysical estimation, it’s ok to mix angles as long as the model accounts for the incident angle

Airborne CV-580 C-Band SAR, South of Ottawa, 1998 July 9

\[R = HH \quad G = HV \quad B = VV \]
A Complication: The Environment

Always, always, always check the environmental conditions at the time of image acquisition before using SAR data.

Rule 1: Never use SAR if it was raining at the time of the acquisition

- **Why?** Although SAR is considered “all weather” this does not include imaging during rain events as water in the atmosphere will cause SAR scattering. In some regions of the world, risks are diurnally dependent.

Rule 2: Never use SAR if the ground is frozen

- **Why?** The dielectric constant drops close to zero when water changes to a frozen state. Thus even if there is water in the soil, the SAR will view the soil as dry. SAR can detect freeze/thaw events. Freezing often occurs overnight.
A Complication: The Environment

Rule 3: Consider if dew might be present during early morning acquisitions

- **Why?** Presence of water on leaves will increase backscatter (big problem for biophysical modelling). If water on canopy is significant (just after rain), contrast between targets can be reduced. Dew is most prominent in temperate regions in early morning hours.
- **Select orbits** (ascending – evening; descending – morning) carefully
- **Always check in with meteorological stations**
Another Complication: Noise in SAR

- when we think of SAR, each resolution cell is composed of many scattering elements, which contribute to the scatter
- these scattered waves have a phase determined by the scattering events
- the response from each resolution cell is the sum of the amplitude and phase from these scattering elements
- all of these scattered waves can lead to complex interference, sometimes this is constructive (bright pixels) and sometimes destructive (dark pixels)
- the result: speckle “salt and pepper” noise
Speckle Suppression

Speckle can be reduced two ways

• multi-look processing - divides the radar beam into several narrower sub-beams. Each sub-beam provides an independent “look.” These looks are summed to form a final output image with reduced speckle

• spatial or temporal averaging - speckle reduction filters applied to the detected image

• multi-looking and spatial filtering reduce speckle at the expense of resolution

Adaptive radar speckle filters

• adaptive radar filters will reduce speckle while preserving the edges

• these filters will modify the image based on statistics extracted from the local environment of each pixel

Image Credit: Par Bieu Technologies
Hands-on Demonstration
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Extract Backscatter for Four Linear Polarizations

1. Read
2. Calibration
3. Polarimetric-Speckle-Filter
4. Terrain Correction
5. Write
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Read RS2 SLC .zip Image

Using RADARSAT-2 quad pol FQ15W mode SLC data acquired on July 27, 2016, over Carman, MB, Canada
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Calibration: Convert Pixel Values to Radar Backscatter
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Speckle Filter -- 5 by 5 Gamma Map
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Terrain-Correction
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

RapidEye natural color image acquired on July 22, 2016

(R=HH, G=HV, B=VV)
Pre-Processing RADARSAT-2 QP SLC data with SNAP

Implement Polarimetric Decomposition

Read → Calibration → Polarimetric-Speckle-Filter → Polarimetric-Decomposition → Terrain Correction → Write
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Read RS2 SLC .zip Image

Using RADARSAT-2 quad pol FQ15W mode SLC data acquired on July 27, 2016, over Carman, MB, Canada
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)
Calibration: Convert Pixel Values to Radar Backscatter
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Speckle Filter -- 5 by 5 Boxcar
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Freeman Durden Decomposition
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

Terrain-Correction
Pre-Processing RADARSAT-2 QP SLC data with SNAP (6.0)

RapidEye natural color image acquired on July 22, 2016

RGB false color composite of Freeman-Durden decomposition images (extracted from RADARSAT-2 acquired on July 27, 2016).

R=Surface, G=Volume, B=Double
Soil Moisture Processing with the Soil Moisture Toolbox in the SNAP Software Using RADARSAT-2 Data

- Soil moisture map derived from one a.m. RADARSAT-2 acquisition and one p.m. RADARSAT-2 acquisition using multi-angle approach
- RADARSAT-2 a.m. and p.m. data collected only one date apart. The inversion method is performed on the overlapping geographic area.
Soil Moisture Processing with the Soil Moisture Toolbox in the SNAP Software Using RADARSAT-2 Data

RADARSAT-2 SAR image acquired on May 13, 2016 Ascending pass

RADARSAT-2 SAR image acquired on May 12, 2016 Descending pass
Soil Moisture Processing with the Soil Moisture Toolbox in the SNAP Software Using RADARSAT-2 Data
Pre-Processing Sentinel-1 SAR GRDH Data with SNAP (v 6.0)

1. Read
2. Apply-Orbit-File
3. Multilook
4. Calibration
5. Speckle-Filter
6. Terrain Correction
7. Write
Access Sentinel-1 SAR data from Vertex

https://vertex.daac.asf.alaska.edu/
Read Sentinel-1 .zip Image

Using Sentinel-1A IW mode GRDH level -1 data acquired on July 31, 2016, over Carman, MB, Canada
Sentinel-1 SAR GRDH Data Pre-Processing with SNAP (v 6.0)

Orbital Correction
Sentinel-1 SAR GRDH Data Pre-Processing with SNAP (v 6.0)

Multilooking: average the power across a number of lines in both the azimuth and range directions, 3 by 3
Sentinel-1 SAR GRDH Data Pre-Processing with SNAP (v 6.0)

Calibration: Convert Pixel Values to Radar Backscatter
Sentinel-1 SAR GRDH Data Pre-Processing with SNAP (v 6.0)

Speckle Filter -- 3 by 3 Gamma Map
Sentinel-1 SAR GRDH Data Pre-Processing with SNAP (v 6.0)

Terrain-Correction
Sentinel-1 SAR GRDH Data Pre-Processing with SNAP (v 6.0)

RapidEye natural color image acquired on July 22, 2016

RGB false color composite of Sentinel 1 SAR VH,VV image acquired on July 31, 2016

\(R=HH, G=HV, B=HH \)
Sentinel-1 SAR GRDH Data Pre-Processing with SNAP (v 6.0)

Co-Registration: spatial alignment of images acquired on June 13, July 7, and July 31, 2016
Crop Classification Using Multi-Temporal Sentinel-1 SAR Images with SNAP

Data preparation for supervised classification

Training data collected from 2016 SMAPVEX field campaign

Sentinel-1 SAR image acquired on June 13, 2016

Sentinel-1 SAR image acquired on July 7, 2016

Sentinel-1 SAR image acquired on July 31, 2016
Crop Classification Using Multi-Temporal Sentinel-1 SAR Images with SNAP

Random Forest Classification of Crop Type Maps