The NASA Disasters Program sponsors application science to support disaster risk reduction, response, and recovery through a series of grants and partnerships funded by the NASA Research Opportunities in Space and Earth Science (ROSES) program. The current portfolio of projects from the 2019 ROSES A.37 solicitation covers a broad swath of hazard and disaster research, from tsunami and landslide forecasting to volcanic ash and wildfire smoke plume tracking. It represents the cutting edge of applied disasters research. The program’s research efforts aim to assemble scientifically-defensible studies on disaster risk management, demonstrate the applications of NASA Earth-observing data for studying disasters, and mature the technologies and techniques developed from these projects to operational use.


Projects

Principal Investigator

Margaret T Glasscoe

Floods are the deadliest and most costly natural hazard worldwide, so it is important to obtain highly reliable information about global flooding events. This project aims to integrate flood inundation information from multiple sources into the DisasterAWARE® (All-hazard Warnings, Analysis, and Risk Evaluation) platform, providing...

Principal Investigator

Kyle Hilburn

Over the past decade, increasing wildfire frequency and intensity in the United States has led to several devastating wildfire seasons. The United States’ fire-prone landscape is more densely settled and developed than in previous years, resulting in steeply rising fire-suppression costs. The Weather Research Forecasting...

Principal Investigator

Nickolay Krotkov

The dangers that volcanic ash clouds pose on inflight air traffic safety can lead to prolonged flight cancellations that have a ripple effect on the airline industry’s economy and personal travel. Low-latency satellite observations provide crucial information for rerouting air traffic around volcanic clouds. During...

Principal Investigator

Ronald Eguchi

Catastrophe (CAT) models help insurance companies price insurance by using data from natural hazard physical parameters (e.g., ground motion, flood depth, wind speed) to assess risk and probable loss. These models depend on geographic information systems (GIS) databases to characterize building exposure, but in emerging...

Principal Investigator

Francis Monaldo

The National Oceanic and Atmospheric Administration (NOAA) is responsible for monitoring coastal U.S. waters for accidental and deliberate oil spills, as well as for the emergency response and environmental assessment and restoration following such events. In addition, in the aftermath of severe storms, NOAA assesses the...

Principal Investigator

Dalia Kirschbaum

Landslides globally cause loss of life and lasting damage to critical infrastructure. A major rainfall or earthquake can trigger tens of thousands of landslides, compounding losses from damage to transportation networks that inhibit disaster response, resulting in cascading effects such as flooding and debris hazards...

Principal Investigator

Sang-Ho Yun

The moments immediately following a disaster are crucial to a swift recovery, yet it can be difficult for first responders to find reliable disaster information with such a tight timeframe. Sang-Ho Yun’s research project aims to provide rapid mapping of disaster damage using synthetic aperture...

Principal Investigator

Kristopher Bedka

Much of the world is impacted by severe thunderstorms, but whether they become disasters depends upon resilience: the capacity to prepare, mitigate, respond, and recover. Hail is the costliest severe weather hazard for the insurance industry, generating ~70% of severe convective storm losses in 2017...

Principal Investigator

Franz Meyer

Weather-related hazards are ubiquitous in the United States, including: 1) hurricane storm surges impacting coastal areas, 2) rapid snowmelt and heavy rainfall causing basin-scale flooding, 3) severe weather leading to flash floods and tornadoes, and 4) seasonal freeze and thaw of rivers that may lead...

Principal Investigator

Diego Melgar

Compared to other natural hazards such as hurricanes or forest fires that annually propagate, large tsunamis are infrequent. As a result, over the last 50 years as digital geophysical instrumentation has matured, local tsunami warning systems that alert the coastlines immediately adjacent to a large event have not...